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Unlike for pairs of scalars, we did not define multiplication between
two vectors. For almost all positive integers n, the coordinate space
K

n cannot be equipped with a second binary operation that behaves
like multiplication—a reasonable vector product would be nontrivial,
associative, and distributive. Nevertheless, we feature those special
cases for which there exists such a vector product.

2.0 Complex Numbers

How is the multiplication of vectors in R
2 defined? The

complex numbers may viewed as the real coordinate plane R
2 with a

vector product.
2~e1 +~e2

�~e1 + 2~e2

Figure 2.0: The vector product

~e2(2~e1 +~e2) = �~e1 + 2~e2

2.0.0 Theorem. The coordinate space R
2 together with the vector product

defined, for all a, b, c, d 2 R, by

(a~e1 + b~e2)(c~e1 + d~e2) := (ac � bd)~e1 + (ad + bc)~e2 ,

forms a field of scalars called the complex numbers.

Proof. Since Section 1.2 already demonstrates that vector addition
in R

2 satisfies the four properties for a field of scalars that only
involve addition, it suffices to verify the five properties that involve
multiplication. Let a, b, c, d, e, f 2 R denote arbitrary real numbers.
The commutativity, associativity, and distributivity of addition and
multiplication for real numbers give

(a~e1 + b~e2)(c~e1 + d~e2) = (ac � bd)~e1 + (ad + bc)~e2

= (ca � db)~e1 + (da + cb)~e2

= (c~e1 + d~e2)(a~e1 + b~e2) ,
�
(a~e1 + b~e2)(c~e1 + d~e2)

�
(e~e1 + f ~e2) =

�
(ac � bd)e � (ad + bc) f

�
~e1 +

�
(ac � bd) f + (ad + bc)e

�
~e2

=
�
a(ce � d f )� b(c f + de)

�
~e1 +

�
a(c f + de) + b(ce � d f )

�
~e2

= (a~e1 + b~e2)
�
(c~e1 + d~e2)(e~e1 + f ~e2)

�
,

(a~e1 + b~e2)
�
(c~e1 + d~e2) + (e~e1 + f ~e2)

�
=
�
a(c + e)� b(d + f )

�
~e1 +

�
a(d + f ) + b(c + e)

�
~e2

=
�
(ac � bd) + (ae � b f )

�
~e1 +

�
(ad + bc) + (a f + be)

�
~e2

= (a~e1 + b~e2)(c~e1 + d~e2) + (a~e1 + b~e2)(e~e1 + f ~e2) ,
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which establishes the commutativity, associativity, and distributivity
for vector multiplication on R

2. For the existence of a multiplicative
identity, we observe that

(1~e1 + 0~e2)(c~e1 + d~e2) =
�
(1)(c)� (0)(d)

�
~e1 +

�
(1)(d)+ (0)(c)

�
~e2 = c~e1 + d~e2 .

Lastly, if a~e1 + b~e2 6=~0, then we have a2 + b2 6= 0 and

(a~e1 + b~e2)

8
>>:
✓

a
a2 + b2

◆
~e1 �

✓
b

a2 + b2

◆
~e2

9
>>;=

✓
a2 + b2

a2 + b2

◆
~e1 +

✓
�ab + ab
a2 + b2

◆
~e2 = 1~e1 + 0~e2 ,

so every nonzero vector in R
2 has a multiplicative inverse.

2.0.1 Notation. The complex numbers are denoted by C. Traditionally,
one renames the standard basis vectors ~e1,~e2 2 R

2 as 1, i 2 C, so
a + b i := a~e1 + b~e2 and the multiplicative identity is 1 := 1 ~e1 + 0~e2.
With this notation, it is enough to remember the identity

i2 = (0 + i)(0 + i) =
�
(0)(0)� (1)(1)

�
+
�
(0)(1) + (1)(0)

�
i = �1 .

When a single symbol z := a + b i represents a complex number, its
real part is the real number a := Re(z) and its imaginary part is the
real number b := Im(z). We identify R with the subset of complex
numbers whose the imaginary part is zero.

Re
a = Re(z)

Im

b = Im(z)
z = a + b i

Figure 2.1: Points in the complex plane
correspond to complex numbers

2.0.2 Problem. Determine the square roots of �7 � 24 i.

Solution. Suppose that the complex number a + b i, where a, b 2 R,
satisfies the equation �7 � 24 i = (a + b i)2 = (a2 � b2) + 2ab i. It
follows that a2 � b2 = �7 and 2ab = �24, so we have a = �12/b
and

�
� 12

b
�2 � b2 = �7. Multiplying by b2 and gathering terms gives

0 = b4 � 7b2 � 144 = (b2 � 16)(b2 + 9) = (b � 4)(b + 4)(b2 + 9). Since
b 2 R, we deduce that b = ±4 and a = ⌥3, which means that the
square roots are 3 � 4 i and �3 + 4 i.

The methods used to find the square roots in the previous problem
generalizes to all complex numbers.

2.0.3 Proposition. For any z 2 C, there exists w 2 C such that w2 = z.
Moreover, the additive inverse �w also satisfies this quadratic equation.

Proof. Suppose that z = a + b i where a, b 2 R. Consider w = x + y i
such that x, y 2 R and (x2 � y2) + 2xy i = (x + y i)2 = w2 = z = a + b i.
It follows that x2 � y2 = a and 2xy = b, so we have x = b

2y and
� b

2y
�2 � y2 = a. Multiplying by y2 and gathering terms gives

Figure 2.2: Intersection of the
hyperbolas x2 � y2 = a2 and xy = b
when b > 0

0 = y4 + ay2 �
� b

2
�2

=
8
:y2 �

⇣
�a+

p
a2+b2

2

⌘9
;
8
:y2 �

⇣
�a�

p
a2+b2

2

⌘9
;

=

✓
y �

q
�a+

p
a2+b2

2

◆✓
y +

q
�a+

p
a2+b2

2

◆✓
y2 + a+

p
a2+b2
2

◆
,
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because
p

a2 + b2 >
p

a2 = |a| > a. Since y 2 R, we conclude that

The signum function of a real number x
is defined to be

sgn(x) :=

(
�1 if x < 0,

1 if x > 0.

For all x 2 R, we have x = sgn(x) |x|.

y = ±

s
�a +

p
a2 + b2

2
,

x =
b

2y
= ± sgn(b)|b|

2

s
2

�a +
p

a2 + b2
= ± sgn(b)

s
a +

p
a2 + b2

2

and w = ±
 

sgn(b)

s
a +

p
a2 + b2

2
+

s
�a +

p
a2 + b2

2
i

!
.

Finding all of the roots of any quadratic polynomial with complex
coefficients requires only one more ingredient.

2.0.4 Problem. Solve the equation t2 + (�1 + 2 i)t + (1 + 5 i) = 0.

Solution. Completing the square yields

0 = t2 +(�1+ 2 i)t+(1+ 5 i) =
�
t2 + 2(i� 1

2 )t+(i� 1
2 )

2��
�
i� 1

2
�2

+(1+ 5 i) ,

so we have
�
t + (i � 1

2 )
�2

=
�
�1 � i + 1

4
�
� 5i � 1 = 1

4 (�7 � 24 i).
Problem 2.0.2 shows that the square roots of �7 � 24 i are ±(3 � 4 i),
so t +

�
i � 1

2
�
= 1

2 (±3 ⌥ 4 i) and t equals 2 � 3 i or �1 + i.

The existence of roots for polynomials over the complex numbers
turns out to be the quintessential trait for this field of scalars.

2.0.5 Theorem (Fundamental theorem of algebra). Every non-constant
polynomial in one variable with coefficients in the complex numbers has a
complex root. More explicitly, for any positive integer n and any complex
numbers z0, z1, . . . , zn�1 2 C, there exists w 2 C such that

wn + zn�1 wn�1 + zn�2 wn�2 + · · ·+ z1 w + z0 = 0 .

Comment on the proof. Despite its name, there is no algebraic proof.
Any proof must use the "completeness" of the real numbers.

Exercises

2.0.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Each complex number corresponds to exactly one vector in R
2.

ii. Real numbers are not complex numbers.
iii. The imaginary part of a complex number is a real number.
iv. The real number �1 has a unique square root in C.

2.0.7 Problem. Show that complex multiplication is compatible with
scalar multiplication; for all a, b, c 2 R, we have c(a + b i) = ac + bc i.
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2.0.8 Problem. Determine every complex number such that its
multiplicative inverse equals its additive inverse.

2.0.9 Problem (Impossibility of order). Show that the following two
conditions cannot both be satisfied.
• For all z 2 C, one and only one of the relations z > 0, z = 0, and

�z > 0 is valid.
• If w > 0 and z > 0, then w + z > 0 and wz > 0.

2.0.10 Problem (Properties of the complex conjugate). For any number
z = x + y i 2 C with x, y 2 R, its complex conjugate is the number
z := a � b i 2 C. Geometrically, the complex conjugate is the reflection
of the corresponding vector in the real axis. For all z, w 2 C, establish
the following properties of the complex conjugate.

i. z + w = z + w
ii. zw = z w

iii. Re(z) = 1
2 (z + z) and Im(z) = 1

2 i (z � z)
iv. z z = |z|2

v. z = z if and only if z is a real number.

Re

Im

a

b

�b

z = a + b i

z = a � b i

Figure 2.3: Complex conjugate

2.0.11 Problem. Prove that the three numbers z1, z2, z3 2 C with
z1 6= z2 are collinear if and only if

z3 � z1
z2 � z1

2 R.

2.0.12 Problem. Prove that the four numbers z1, z2, z3, z4 2 C with
z1 6= z4, z2 6= z3, and not all on the same line, lie on a circle if and

only if
(z1 � z2)(z3 � z4)
(z1 � z4)(z2 � z3)

2 R.

2.0.13 Problem. Find all w 2 C such that

w2 + (�1 + 5 i)w + (�10 + 5 i) = 0 .

Express your solution(s) in the form w = a + b i where a, b 2 Z.

2.1 Complex Geometry

How can we visualize multiplication of complex numbers?
For any complex number z := a + b i where a, b 2 R, the absolute
value |z| :=

p
a2 + b2 is the magnitude of the underlying vector in

R
2. The argument of z is the angle arg(z) that the vector in R

2 makes
with the positive real axis. Because it is measured in radians, the ar-
gument arg(z) can be changed be any integer multiple of 2p without
changing the angle. The absolute value and argument determine a
complex number: a = |z| cos

�
arg(z)

�
and b = |z| sin

�
arg(z)

�
.

Re

Im

|z
|s

in
� ar

g(
z)
�

|z| cos
�
arg(z)

�

|z|

arg(z)

Figure 2.4: Polar form of z 2 C2.1.0 Problem. Find the absolute value and argument of z := �1 + i.
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Re

Im

1
�1 + i

3p
4

p
2

�1

Figure 2.5: Polar form of �1 + i 2 C

Solution. By definition, we have |z| =
p
(�1)2 + (1)2 =

p
2. Since

tan
�
arg(z)

�
= 1

�1 = �1 and Re(z) < 0, it follows that

arg(z) = arctan(�1) + p = �p

4
+ p =

3p

4
.

Multiplication of complex numbers is especially slick when using
this polar representation.

2.1.1 Proposition (Geometry of complex multiplication). For any two
complex numbers z and w, we have

|zw| = |z| |w| and arg(zw) = arg(z) + arg(w) .

Thus, multiplication by a complex number is a counterclockwise rotation by
the argument and a rescaling by the absolute value.

Proof. Setting q := arg(z) and f := arg(w) gives

z = |z|
�
cos(q) + sin(q) i

�
and w = |w|

�
cos(f) + sin(f) i

�
.

Hence, the addition formula for trigonometric functions gives

zw =
8
:|z|

�
cos(q) + sin(q) i

�9;
8
:|w|

�
cos(f) + sin(f) i

�9;

= |z| |w|
8
:�cos(q) cos(f)� sin(q) sin(f)

�
+
�
cos(q) sin(f) + sin(q) cos(f)

�
i
9
;

= |z| |w|
�
cos(q + f) + sin(q + f) i

�
.

Examining the m-fold product of a complex number, as a special
case, is peculiarly worthwhile.

The lowercase "theta" q is the eighth
letter in the Greek alphabet and is often
used to denote an angle.

2.1.2 Corollary (De Moivre formula). For any nonnegative integer m and
any complex number z := r

�
cos(q) + sin(q) i

�
, it follows that |zm| = |z|m,

arg(zm) = m arg(z), and zm = rm�cos(mq) + sin(mq) i
�
.

Inductive proof. When m = 0, we have z0 = 1, so
��z0�� = 1 = |z|0 and

arg(z0) = 0 = 0 arg(z). Thus, the base case of the induction holds.
Assume that zm�1 = rm�1�cos

�
(m � 1)q

�
+ sin

�
(m � 1)q

�
i
�

for any
positive integer m. The geometry of complex multiplication and the
induction hypothesis imply that

|zm| = |zzm�1| = |z| |zm�1| = |z| |z|m�1 = |z|m ,

arg(zm) = arg(zzm�1) = arg(z) + arg(zm�1)

= arg(z) + (m � 1) arg(z) = m arg(z) .

Next two problems hint at some of the beautiful applications of
the De Moirve formula.

2.1.3 Problem. Express cos(3q) in terms of cos(q) and sin(q).
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Solution. De Moivre’s Formula for r = 1 and m = 3 gives

cos(3q)+ sin(3q) i =
�
cos(q)+ sin(q) i

�3
= cos3(q)+ 3 cos2(q) sin(q) i� 3 cos(q) sin2(q)� sin3(q) i ,

so taking real parts gives cos(3q) = cos3(q)� 3 cos(q) sin2(q).

2.1.4 Problem. Find three solutions to the equation z3 = 1.

Re

Im

1

� 1
2 +

p
3

2 i

� 1
2 �

p
3

2 i

Figure 2.6: Third roots of unit

Solution. Since 1 = 1
�
cos(2p) + sin(2p) i

�
, consider the complex

number z = cos
� 2pk

3
�
+ sin

� 2pk
3
�

i where 0 6 k 6 2. The De Moivre
formula shows that

��z3�� = 1 and arg(z3) = 2pk, so the solutions are 1,
� 1

2 +
p

3
2 i, and � 1

2 �
p

3
2 i.

What is the exponential of a complex number? For all x 2 R,
the exponential function exp(x) = ex equals the power series

•

Â
j=0

xj

j!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

To extend this function to C, it would be natural to define ey i, for
all y 2 R, to be 1 + (y i)

1! + (y i)2

2! + (y i)3

3! + · · · . To make this rigorous,
we would need to discuss convergence in C which we will not do.
Nevertheless, a slight rearrangement and recognizing the power
series for cos(y) and sin(y) yield

exp(y i) = ey i =
�
1� y2

2! +
y4

4! � · · ·
�
+
�
y� y3

3! +
y5

5! � · · ·
�

i = cos(y)+ sin(y) i .

This discussion can be strengthened to prove the next theorem.

2.1.5 Theorem (Euler formula). For any complex number z = x + y i
where x, y 2 R, the complex exponential function satisfies

exp(z) = ez = ex�cos(y) + sin(y) i
�

.

In particular, we have |ez| = ex = exp
�
Re(z)

�
, and arg(ez) = y = Im(z).

The equation ep i + 1 = 0 unites the
five most important numbers and
the seven most important symbols in
mathematics.

We summarize the main properties of the exponential function.

2.1.6 Proposition (Properties of complex exponential function).
i. The exponential function is multiplicative: for all z, w 2 C, we have

ez+w = ezew.
ii. The exponential function is never zero: for all z 2 C, we have ez 6= 0.

iii. We have ez = 1 if and only if z = 2pm i for some m 2 Z.

Proof.
i. The Euler formula and the multiplicative property of the real

exponential function give
��ez+w�� = exp

�
Re(z + w)

�
= exp

�
Re(z) + Re(w)

�
= |ez| |ew| ,

arg(ez+w) = Im(z + w) = Im(z) + Im(w) = arg(ez) + arg(ew) ,

so the geometry of multiplication shows that ez+w = ezew.
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ii. Part (i) implies that eze�z = ez�z = e0 = 1, so the complex
number ez has a multiplicative inverse and ez 6= 0.

iii. Suppose z = x + y i where x, y 2 R. The equation ez = 1, together
with the Euler formula, implies that ex = 1 and x = 0. Hence,
we have 1 = ey i = cos(y) + sin(y) i, so cos(y) = 1 and sin(y) = 0
which means that y = 2pm for some m 2 Z.

Exercises

2.1.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The absolute value of a complex number is a real number.
ii. The argument of a complex number is a real number.

iii. The argument of a sum of complex numbers equals the sum of
the arguments.

iv. The exponential function is periodic.

2.1.8 Problem. Compute (1 + i)1000.

2.1.9 Problem. Given two complex numbers z := r
�
cos(q) + sin(q) i

�

with r, q 2 R and w := s
�
cos(f) + sin(f) i

�
6= 0 with s, f 2 R, show

that
z
w

=
r
s
�
cos(q � f) + sin(q � f) i

�
.

2.1.10 Problem. Simplify
(1 � i)10(

p
3 + i)5

(�1 �
p

3 i)10
.

2.1.11 Problem. For z, w 2 C, show that

|z + w|2 + |z � w|2 = 2(|z|2 + |w|)2 .

2.1.12 Problem. If z, w 2 C satisfy |z| = |w| = 1 and zw 6= �1, then
demonstrate that

z + w
1 + zw

2 R .

2.1.13 Problem. Find all z 2 C such that |z| = 1 and
����
z
z
+

z
z

���� = 1 .

2.1.14 Problem. For 0 < q < 2p, calculate the polar representation of
z = 1 + cos(q) + sin(q) i.

2.1.15 Problem. Prove the following related identities.
i. For all z, w 2 C, show that |zw| = |z| |w| by using complex

conjugates.
ii. For all a, b, c, d 2 R, show that

(ac � bd)2 + (ad + bc)2 = (a2 + b2)(c2 + d2) .
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2.1.16 Problem. Consider the complex numbers z := �3 �
p

3 i and
w := �1 +

p
3 i.

i. Find zw and z/w. Give your answer in the form x + y i where
x, y 2 R.

ii. Put z and w into polar form req i = r
�
cos(q) + sin(q) i

�
. Find zw

and z/w using the polar form and verify that you get the same
answer as in part (a).

2.1.17 Problem. For any complex number z := r
�
cos(q) + sin(q) i

�

where r, q 2 R, show that the n-th roots are

r1/n
⇣

cos
�

q+2pk
n
�
+ sin

�
q+2pk

n
�

i
⌘

for k 2 N with k < n.

2.1.18 Problem. For all z 2 C, we define

sin(z) :=
ez i � e�z i

2 i
and cos(z) :=

ez i + e�z i

2
.

For z, w 2 C, prove the following identities.
i. sin2(z) + cos2(z) = 1;

ii. sin(z + w) = sin(z) cos(w) + cos(z) sin(w);
iii. cos(z + w) = cos(z) cos(w)� sin(z) sin(w).

2.2 The Cross Product

How can we multiply vectors in R
3? Although quite different

than multiplication of scalars, there is a useful vector product on R
3.

Geometrically, we must associate a magnitude (or nonnegative real
number) and a direction (or unit vector) to any pair ~v, ~w 2 R

3.
• The associated magnitude is the area of the parallelogram formed

by the two vectors. If 0 6 q 6 p denotes the angle between ~v and
~w, then the height of the parallelogram equals k~wk sin(q) and the
area of the parallelogram equals k~vk k~wk sin(q).

~w

~v

~v

~wq

Figure 2.7: Area of parallelogram

• To visualize the associated direction, position the vectors ~v and
~w so that their tails coincide. Orient your right hand so that its
edge and all of your finger point in the same direction as ~v. With
a flat hand, extend your thumb so that it is perpendicular to your
fingers. When curling your fingers through the angle q, from ~v
to ~w, your thumb points in the direction of the unit vector ~n. By
construction, the vector ~n is perpendicular to the plane containing
~v and ~w, and this right-hand rule chooses one side of the plane.

~v

~w

~n

q

Figure 2.8: The right-hand rule: if ~v
and ~w lie in the plane the page, then
~n points out of the page toward the
reader.

2.2.0 Definition. For any two vectors ~v and ~w in R
3, the following two

definitions of the cross product ~v ⇥ ~w 2 R
3 are equivalent.
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(geometric) For any two vectors ~v and ~w that are not parallel, we set

~v ⇥ ~w :=
�
k~vk k~wk sin(q)

�
~n

where 0 < q < p is the angle between ~v and ~w, and ~n is the unit
vector determined by the right-hand rule. For parallel vectors ~v
and ~w, we set ~v ⇥ ~w :=~0.

The geometric definition was made
in 1878 by W.K. Clifford. The name
"cross product" and the notation were
introduced in 1881 by J.W. Gibbs.

(algebraic) Given the two vectors ~v := v1~e1 + v2~e2 + v3~e3 and
~w := w1~e1 + w2~e2 + w3~e3, we set

~v ⇥ ~w := (v2w3 � v3w2)~e1 + (v3w1 � v1w3)~e2 + (v1w2 � v2w1)~e3 .

+ + +

~e1 ~e2 ~e3 ~e1 ~e2

v1 v2 v3 v1 v2

w1 w2 w3 w1 w2

� � �
Figure 2.9: The cross product is the sum
of the product along the solid diagonals
minus the sum of the produces along
the dotted diagonals. This mnemonic is
named after P.F. Sarrus.

2.2.1 Problem. Compute ~ej ⇥~ek for all 1 6 j < k 6 3.

Geometric solution. Since the standard basis vectors ~e1,~e2,~e3 are
pairwise perpendicular unit vectors, the geometric definition of
the cross product gives

~e1 ⇥~e2 = k~e1k k~e2k sin
�

p
2
�
~e3 = ~e3 ,

~e1 ⇥~e3 = k~e1k k~e3k sin
�

p
2
�
(�~e2) = �~e2 ,

~e2 ⇥~e3 = k~e2k k~e3k sin
�

p
2
�
~e1 = ~e1 .

Algebraic solution. The algebraic definition of the cross product yields

~e1 ⇥~e2 =
�
(0)(0)� (0)(1)

�
~e1 +

�
(0)(0)� (1)(0)

�
~e2 +

�
(1)(1)� (0)(0)

�
~e3 = ~e3 ,

~e1 ⇥~e3 =
�
(0)(1)� (0)(0)

�
~e1 +

�
(0)(0)� (1)(1)

�
~e2 +

�
(1)(0)� (0)(0)

�
~e3 = �~e2 ,

~e2 ⇥~e3 =
�
(1)(1)� (0)(0)

�
~e1 +

�
(0)(0)� (0)(1)

�
~e2 +

�
(0)(0)� (1)(0)

�
~e3 = ~e1 ,

because ~ej has 1 in the j-th entry and zeros elsewhere.

2.2.2 Proposition (Properties of the cross product). For any three vectors
~u, ~v, and ~w in R

3 and any scalar c 2 R, we have the following:
(anti-commutativity) ~v ⇥ ~w = �(~w ⇥ ~v)
(compatibility with scalar multiplication) ~v ⇥ (c ~w) = c(~v ⇥ ~w) = (c~v)⇥ ~w
(distributivity) ~u ⇥ (~v + ~w) = ~u ⇥ ~v + ~u ⇥ ~w

Geometric proof. For all ~v 2 R
3, we have ~v ⇥ ~v = ~0 because ~v is

parallel to itself. The right-hand rule tells us that ~v ⇥ ~w and ~w ⇥ ~v
point in opposite directions. Since the magnitudes of ~v ⇥ ~w and ~w ⇥ ~v
both equal the area of the parallelogram formed by ~v and ~w, we have
~v ⇥ ~w = �(~w ⇥ ~v) which proves anti-commutativity property.

By anti-commutativity, we may assume that c > 0 by interchanging
~v and ~w if necessary. Hence, the relation between magnitude and
scalar multiplication gives

kc~vk k~wk sin(q) = c k~vk k~wk sin(q) = k~vk kc~wk sin(q) ,

whence the compatibility with scalar multiplication follows.
We postpone the proof of distributivity until we have introduced

the triple product; see Problem 3.0.8.
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Algebraic proof. The algebraic definition of the cross product gives
~v ⇥ ~w = (v2w3 � v3w2)~e1 + (v3w1 � v1w3)~e2 + (v1w2 � v2w1)~e3

= �
�
(v3w2 � v2w3)~e1 + (v1w3 � v3w1)~e2 + (v2w1 � v1w2)~e3

�
= �(~w ⇥ ~v) ,

~v ⇥ (c ~w) = (cv2w3 � cv3w2)~e1 + (cv3w1 � cv1w3)~e2 + (cv1w2 � cv2w1)~e3 = (c~v)⇥ ~w

= c
�
(v3w2 � v2w3)~e1 + (v1w3 � v3w1)~e2 + (v2w1 � v1w2)~e3

�
= c(~v ⇥ ~w) ,

~u ⇥ (~v + ~w) =
�
u2(v3 + w3)� u3(v2 + w2)

�
~e1 +

�
u3(v1 + w1)� u1(v3 + w3)

�
~e2

+
�
u1(v2 + w2)� u2(v1 + w1)

�
~e3

= (u2v3 � u3v2)~e1 + (u3v1 � u1v3)~e2 + (u1v2 � u2v1)~e3

+(u2w3 � u3w2)~e1 + (u3w1 � u1w3)~e2 + (u1w2 � u2w1)~e3 = ~u ⇥ ~v + ~u ⇥ ~w ,

which establishes the three properties of the cross product.

Why do the two definitions of the cross product agree? For
any ~u 2 R

3, the anti-commutativity of the cross product means that
~u ⇥ ~u = �(~u ⇥ ~u), which implies that 2(~u ⇥ ~u) = ~0 and ~u ⇥ ~u = ~0.
For all ~v := v1~e1 + v2~e2 + v3~e3 and ~w := w1~e1 + w2~e2 + w3~e3, the
properties of cross product establish that

~v ⇥ ~w = (v1~e1 + v2~e2 + v3~e3)⇥ (w1~e1 + w2~e2 + w3~e3)

= v1w1(~0 ) + v1w2(~e1 ⇥~e2) + v1w3(~e1 ⇥~e3)

�v2w1(~e1 ⇥~e2) + v2w2(~0 ) + v2w3(~e2 ⇥~e3)

�v3w1(~e1 ⇥~e3)� v3w2(~e2 ⇥~e3) + v3w3(~0 ) .

Hence, it suffices to know that geometric and algebraic definitions of
the cross products agree on ~ej ⇥~ek where 1 6 j < k 6 3. Fortuitously,
Problem 2.2.1 already does this.

⇥ ~e1 ~e2 ~e3

~e1 ~0 ~e3 �~e2

~e2 �~e3 ~0 ~e1

~e3 ~e2 �~e1 ~0

Figure 2.10: Multiplication table for the
cross product of the standard basis
vectors

Exercises

2.2.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The cross product of two vectors in R
3 is another vector in R

3.
ii. The cross product is defined for any two vectors in R

n.
iii. The cross product of two vectors is zero if and only if one vector

is parallel to the other.
iv. The cross product is commutative.

2.2.4 Problem. For all vectors ~u,~v, ~w 2 R
3, simplify the following

expressions.
i. (~v � ~w)⇥ (~v + ~w)

ii. (~u + ~v + ~w)⇥ (~v + ~w)

2.2.5 Problem. Demonstrate that the cross product is not associative by
exhibiting three vectors ~u, ~v, and ~w in R

3 such that

(~u ⇥ ~v)⇥ ~w 6= ~u ⇥ (~v ⇥ ~w) .
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2.2.6 Problem. Show that the cross product is not cancellative by
exhibiting three vectors ~u, ~v, and ~w in R

3 such that ~u 6= ~0, ~v 6= ~w,
and ~u ⇥ ~v = ~u ⇥ ~w.

2.2.7 Problem. Find the area of the triangle with edges corresponding
to the vectors ~v := 2~e1 +~e2 � 3~e3, ~w := ~e1 + 3~e2 + 2~e3, and ~w �~v.

2.2.8 Problem. For the position vector~r locating a particle, having
mass m and velocity ~v, relative to a fixed point, the angular momen-
tum ~̀ of the particle relative to the fixed is defined to be ~̀ := m(~r ⇥ ~v).
A 2 kg object has position vector~r = (2~e1 + 4~e2 � 3~e3) m and veloc-
ity vector ~v = (�6~e1 + 3~e2 + 3~e3) m · s�1. Determine the angular
momentum of the object about the origin.

2.2.9 Problem. When a force ~F is applied to a particle and~r is the
position vector locating the particle relative to a fixed point, the
torque on the particle relative to the fixed point is defined to be
~t :=~r ⇥ ~F. A particle moves in R

3 while a force acts on it. When the
particle has the position vector~r = (2~e1 � 5~e2 +~e3) m, the force is
given by ~F = (F1~e1 + 4~e2 � 3~e3) N, and the torque about the origin is
~t = (11~e1 + 5~e2 + t3~e3) N · m. Find the scalars F1 and t3.

2.2.10 Problem (Law of sines). If a, b, and c are the lengths of the sides
in a triangle and a, b, and g are the opposite angles, then prove that

sin(a)
a

=
sin(b)

b
=

sin(g)
c

,

using the cross product.

a g

b

A b C

a

B

c

Figure 2.11: The angles a, b, g in the
triangle are opposite to the sides a, b, c.

2.3 Quaternions*

How is vector multiplication on R
4 defined? The quaternions

may viewed as R
4 with a vector product.

The quaternions were introduced in
1843 by W.R. Hamilton.

2.3.0 Theorem (Quaternions). The coordinate space R
4, together with the

vector multiplication defined by

~v~w = (v1~e1 + v2~e2 + v3~e3 + v4~e4)(w1~e1 + w2~e2 + w3~e3 + w4~e4)

= (v1w1 � v2w2 � v3w3 � v4w4)~e1 + (v1w2 + v2w1 + v3w4 � v4w3)~e2

+(v1w3 � v2w4 + v3w1 + v4w2)~e3 + (v1w4 + v2w3 � v3w2 + v4w1)~e4 ,

satisfies the defining properties a field of scalars, except that multiplication is
not commutative.

Proof. Since Section 1.2 already demonstrates that vector addition in
R

4 satisfies the four properties for a field of scalars that only involve
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addition, it suffices to verify the four of the properties that involve
vector multiplication. Let ~u,~v, ~w 2 R

4 be arbitrary vectors. The
associativity and distributivity of addition and multiplication on the
real numbers give

~u(~v + ~w) =
�
u1(v1 + w1)� u2(v2 + w2)� u3(v3 + w3)� u4(v4 + w4)

�
~e1

+
�
u1(v2 + w2) + u2(v1 + w1) + u3(v4 + w4)� u4(v3 + w3)

�
~e2

+
�
u1(v3 + w3)� u2(v4 + w4) + u3(v1 + w1) + u4(v2 + w2)

�
~e3

+
�
u1(v4 + w4) + u2(v3 + w3)� u3(v2 + w2) + u4(v1 + w1)

�
~e4

=
�
(u1v1 � u2v2 � u3v3 � u4v4) + (u1w1 � u2w2 � u3w3 � u4w4)

�
~e1

+
�
(u1v2 + u2v1 + u3v4 � u4v3) + (u1w2 + u2w1 + u3w4 � u4w3)

�
~e2

+
�
(u1v3 � u2v4 + u3v1 + u4v2) + (u1w3 � u2w4 + u3w1 + u4w2)

�
~e3

+
�
(u1v4 + u2v3 � u3v2 + u4v1) + (u1w4 + u2w3 � u3w2 + u4w1)

�
~e4

= ~u~v + ~u~w ,

~e1~v = (1v1 � 0v2 � 0v3 � 0v4)~e1 + (1v2 + 0v1 + 0v4 � 0v3)~e2

+(1v3 � 0v4 + 0v1 + 0v2)~e3 + (1v4 + 0v3 � 0v2 + 0v1)~e4

= v1~e1 + v2~e2 + v3~e3 + v4~e4 = ~v ,

(~u~v)~w =
�
(u1v1 � u2v2 � u3v3 � u4v4)w1 � (u1v2 + u2v1 + u3v4 � u4v3)w2

�(u1v3 � u2v4 + u3v1 + u4v2)w3 � (u1v4 + u2v3 � u3v2 + u4v1)w4
�
~e1

+
�
(u1v1 � u2v2 � u3v3 � u4v4)w2 + (u1v2 + u2v1 + u3v4 � u4v3)w1

+(u1v3 � u2v4 + u3v1 + u4v2)w4 � (u1v4 + u2v3 � u3v2 + u4v1)w3
�
~e2

+
�
(u1v1 � u2v2 � u3v3 � u4v4)w3 � (u1v2 + u2v1 + u3v4 � u4v3)w4

+(u1v3 � u2v4 + u3v1 + u4v2)w1 + (u1v4 + u2v3 � u3v2 + u4v1)w2
�
~e3

+
�
(u1v1 � u2v2 � u3v3 � u4v4)w4 + (u1v2 + u2v1 + u3v4 � u4v3)w3

�(u1v3 � u2v4 + u3v1 + u4v2)w2 + (u1v4 + u2v3 � u3v2 + u4v1)w1
�
~e4

=
�
u1(v1w1 � v2w2 � v3w3 � v4w4)� u2(v1w2 + v2w1 + v3w4 � v4w3)

�u3(v1w3 � v2w4 + v3w1 + v4w2)� u4(v1w4 + v2w3 � v3w2 + v4w1)
�
~e1

+
�
u1(v1w2 + v2w1 + v3w4 � v4w3) + u2(v1w1 � v2w2 � v3w3 � v4w4)

+u3(v1w4 + v2w3 � v3w2 + v4w1)� u4(v1w3 � v2w4 + v3w1 + v4w2)
�
~e2

+
�
u1(v1w3 � v2w4 + v3w1 + v4w2)� u2(v1w4 + v2w3 � v3w2 + v4w1)

+u3(v1w1 � v2w2 � v3w3 � v4w4) + u4(v1w2 + v2w1 + v3w4 � v4w3)
�
~e3

+
�
u1(v1w4 + v2w3 � v3w2 + v4w1) + u2(v1w3 � v2w4 + v3w1 + v4w2)

�u3(v1w2 + v2w1 + v3w4 � v4w3) + u4(v1w1 � v2w2 � v3w3 � v4w4)
�
~e4

= ~u(~v~w) ,

which establishes distributivity, the existence of a multiplicative
identity, and associativity for vector multiplication in R

4. Lastly, if
~v 6= ~0, then we have v2

1 + v2
2 + v2

3 + v2
4 6= 0. Hence, commutativity of

multiplication in R yields

~v(v1~e1 � v2~e2 � v3~e3 � v4~e4) = (v2
1 + v2

2 + v2
3 + v2

4)~e1 + (�v1v2 + v2v1 � v3v4 + v4v3)~e2

+(�v1v3 + v2v4 + v3v1 � v4v2)~e3(�v1v4 � v2v3 + v3v2 � v4v1)~e4

= (v2
1 + v2

2 + v2
3 + v2

4)~e1 ,
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so (v2
1 + v2

2 + v2
3 + v2

4)
�1(v1~e1 � v2~e2 � v3~e3 � v4~e4) 2 R

4 is the
multiplicative inverse of the vector ~v.

2.3.1 Notation. The quaternions are denoted by H. Traditionally, one
renames the standard basis vectors ~e1,~e2,~e3,~e4 2 R

2 as 1, i, j, k 2 H,
so a + b i + c j + d k := a~e1 + b~e2 + c~e3 + d~e4 and the multiplicative
identity is 1.

1 i j k

1 1 i j k
i i �1 k �j
j j �k �1 i
k k j �i �1

Figure 2.12: The multiplication table for
the quaternion units

2.3.2 Problem. Show that quaternion units satisfy the relations

i2 = j2 = k2 = i j k = �1 .

Solution. The definition of the multiplication in H implies that

i2 =
�
(0)(0)� (1)(1)� (0)(0)� (0)(0)

�
+
�
(0)(1) + (1)(0) + (0)(0)� (0)(0)

�
i

+
�
(0)(0)� (1)(0) + (0)(0) + (0)(1)

�
j +
�
(0)(0) + (1)(0)� (0)(1) + (0)(0)

�
k = �1 ,

j2 =
�
(0)(0)� (0)(0)� (1)(1)� (0)(0)

�
+
�
(0)(0) + (0)(0) + (1)(0)� (0)(1)

�
i

+
�
(0)(1)� (0)(0) + (1)(0) + (0)(0)

�
j +
�
(0)(0) + (0)(1)� (1)(0) + (0)(0)

�
k = �1 ,

k2 =
�
(0)(0)� (0)(0)� (0)(0)� (1)(1)

�
+
�
(0)(0) + (0)(0) + (0)(1)� (1)(0)

�
i

+
�
(0)(0)� (0)(1) + (0)(0) + (1)(0)

�
j +
�
(0)(1) + (0)(0)� (0)(0) + (1)(0)

�
k = �1 ,

i j =
�
(0)(0)� (1)(0)� (0)(1)� (0)(0)

�
+
�
(0)(0) + (1)(0) + (0)(0)� (0)(1)

�
i

+
�
(0)(1)� (1)(0) + (0)(0) + (0)(0)

�
j +
�
(0)(0) + (1)(1)� (0)(0) + (0)(0)

�
k = k ,

and i j k = k2 = �1.

Exercises

2.3.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The quaternions form a field of scalars.
ii. The quaternion units satisfy j i = �i j.

2.3.4 Problem. From the basic relations i2 = j2 = k2 = i j k = �1
deduce the following relations:

i i = �1 , i j = k , i k = �j ,

j i = �k , j j = �1 , j k = i ,

k i = �j , k j = �i , k k = �1 .

2.3.5 Problem. For any numbers v1, v2, v3, w1, w2, w3 2 R, consider the
quaternions p := v1 i + v2 j + v3 k 2 H and q := w1 i + w2 j + w3 k 2 H,
and the corresponding vectors ~p := v1~e1 + v2~e2 + v3~e3 2 R

3 and
~q := w1~e1 + w2~e2 + w3~e3 2 R

3. How is the quaternion product pq
related to the cross product ~p ⇥~q?

2.3.6 Problem. Prove the following related identities.
i. For all p, q 2 H, show that |pq| = |p| |q|.
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ii. For all v1, v2, v3, v4, w1, w2, w3, w4 2 R, show that

(v2
1 + v2

2 + v2
3 + v2

4)(w
2
1 + w2

2 + w2
3 + w2

4) = (v1w1 � v2w2 � v3w3 � v4w4)
2

+ (v1w2 + v2w1 + v3w4 � v4w3)
2

+ (v1w3 � v2w4 + v3w1 + v4w2)
2

+ (v1w4 + v2w3 � v3w2 + v4w1)
2 .

2.3.7 Problem. For any h 2 H, show that there exists a, b 2 R such
that h2 = a h + b.

2.3.8 Problem. For any h := a i + b j + c k 2 H such that a, b, c 2 R and
a2 + b2 + c2 = 1, then prove that h2 � 1 = 0, which show that quadratic
polynomials may have infinitely many roots over H.


