3
Scalar Products

Although vector products on IR” are rare, every coordinate space
R" is equipped with an operation that sends a pair of vectors to a
scalar. This chapter explores this scalar product. We highlight its
applications to inequalities, orthogonal projections, and hyperplanes.

3.0 The Dot Product

How DO WE COMBINE TWO VECTORS TO OBTAIN A SCALAR? The dot
product may be defined algebraically or geometrically.

3.0.0 Definition. For any two vector ¥ and @ in R”, the following two
definitions of the dot product - @ € R are equivalent.
(geometric) When 0 < 0 < 7 is the angle between the vectors ¥ and
w, we set T - w = ||T|| ||@]| cos(6).
(algebraic) Assuming thatd := v é; +vy€r + - + v, €, and
W:=w € +wye+ -+ wy e, we set

VW= 01wy + Wy + -+ - + 0wy, .
3.0.1 Problem. For all 1 < j < k < n, demonstrate that Ej -8 = 6]-,;{.

Geometric solution. Since the standard basis €y, €, ..., €, consists of
pairwise perpendicular unit vectors, the geometric definition of the
dot product implies that &; - & = ||| ||&[| cos(5) = (1)(1)(0) = 0,
forall j # k, and &; - & = ||&;]| ||€/]| cos(0) = (1)(1)(1) = 1. O

Algebraic solution. Since the vector €; has 1 in the j-th entry and zero
elsewhere, the algebraic definition of the dot product gives

&&= (0)(0) +(0)(0) + -+ (1)(0) +- -+ (0)(1) +---+(0)(0) = 0,
~—— ~——
j-thsummand  k-th summand
&&= (0)(0) +(0)(0) &+ ()(1) 4+ (0)(0) =1,
and we conclude that ¢; - & :] -tét;;t.lmmand O

3.0.2 Proposition (Properties of the dot product). For all #,v,w € R"
and all ¢ € R, the dot product has the following five properties.

(commutativity) T-W=w- 0
(compatibility with scalar multiplication) U (cw)=c(7- W)
(distributivity) - (0+w)=u-9+1u-
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The name "dot product" and the
notation were introduced in 1881 by
J.W. Gibbs.
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Figure 3.0: The angle 6 between the
vectors ¥ and @

The Kronecker delta is the function
defined by
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(nonnegativity) 7720
(positivity) T-9=0ifand only if 5 = 0
Geometric proof. Let 0 < 0 < 7 be the angle between @ and . Since

multiplication in R is commutative, it follows that

—

0@ = || [|@] cos(6) = [[@|| [|F]| cos(6) = @ -7,

proving the commutativity of the dot product.
Scalar multiplication by a nonnegative number ¢ rescales the T—0
magnitude without changing the direction, so we have « >

(c@) - @ = |[c ]| [|@]| cos(6) = c([|7]| || @] cos(6)) = c(3 - @) <% b

=[]/ le @] cos(6) = T - (c7). - , I
igure 3.1: Angles between +7 and £

In contrast, scalar multiplication by negative number ¢ gives a vector
in the opposite direction and rescales the magnitude by |c|, so

(cB)-@ = |cT| ||@| cos(t — 8) = — |c| (||F]| || @] cos(8)) = c(T - @)
= ||¥]| ||c @] cos(t — 0) =T - (c®).

Hence, the dot product is compatible with scalar multiplication.

If the angle between # and ¥ + w is @, the angle between # and 7 is
¢, and the angle between i and @ is 1, then trigonometry and vector
addition imply that ||7 + @|| cos(9) = ||7]| cos(¢) + ||@|| cos(yp). We
deduce that

ii - (5+®) = [if]| |3+ | cos(8) i
= |l#] (I5]| cos(¢) + [|@|| cos(yp)) =i - T + i - @, PR
which shows that the dot product is distributive. b ||F]| cos(¢) —||_ 1l cos(p) 4
will cos
We have 7 - 7 = ||| ||7]| cos(0) = ||F||* > 0 because the square 17 + @ || cos(6)
of any real number is nonnegative. Since the number 0 has a unique Figure 3.2: Angles between the vector &
square root and the zero vector is the unique vector with magnitude and the vectors ¥, @, ¥ + @
equal to 0, we have ¥ - ¥ = 0 if and only if ¥ = 0. O

Algebraic proof. Since multiplication in R is commutative, we have
T-W = 0wy + 0wy + - -+ + VpWy = W01 + W2 + -+ - + WyVy = W - T,
(c®) - W = (cvr)wy + (cvp)wr + - - - + (cvp)wy = c(viwy + vowp + - - + VW) = (T - @)
=v1(cwy) + va(cwy) + -+ -+ vu(cwy) =T - (c@).
proving commutativity and compatibility with scalar multiplication.
Similarly, multiplication in R is distributive, so we obtain

- (0+w) = u (v +wy) +up(va +wp) + -+ -t (0 + wy)
= (ugv1 + Upvp + - - - + uyvy) + (wy + ugwy + -+ - + uywy) =i -

Q
=
S

+

Since ¥- ¥ = v + 03 + - - - + v2, the dot product is nonnegative because
the square of any real number is nonnegative. A sum of nonnegative
numbers equals zero if and only if each summand is zero, so we

conclude that @ - 7 if and only if 7 = 0. O
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WHY DO THE TWO DEFINITIONS OF THE DOT PRODUCT AGREE? For
alv:=v1e1+vper+---+v,€,and W :=wi € +wreér+-- -+ wy ey,
the properties of dot product establish that

z7~zT):(le1+vzéz+---—l—vnEn)-(le1+w262+---+wnEn)

2) 4+ vw, (€ - €n)
2) + - +02wn(82~8n)

oL

= vwi(€ - €r) +vjwa (e -
+ovowi (€] - €2) + vawa (€ -

oL

+0,w1 (€1 - €n) + vnwo(€r - €y) + - - - + Vywy(€n - €n) .

Hence, it suffices to know that geometric and algebraic definitions
of the dot products agree on é’j -& wherel < j < k < n;see
Problem 3.0.1.

Exercises

3.0.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. The dot product of two vectors is another vector.
ii. In IR?, the dot product and complex multiplication are equal.
iii. In R3, the dot product and the cross product are equal.
iv. The dot product of two nonzero vector equals 0 if and only if the
angle between the two vectors is 7r/2.
v. The dot product is anti-commutative.
vi. The dot product is associative.

3.0.4 Problem. If 7 = €] and @ = 2¢; + 2¢5, then compute ¥ - @ both
geometrically and algebraically.

3.0.5 Problem. A store sells computers, tablets, phones, and watches.
The quantity vector 4§ has components equal to the number of sales of
each item. The price vector p has components equal to the price per
unit of each item. What does the dot product g - § represent?

3.0.6 Problem. Let 7 € R” have magnitude 2. If # € R" has length 3,
what are the maximum and minimum values of the dot product # - 7?
What configurations lead to these extremal values?

3.0.7 Problem. Given #i € R" and ¥ € R" such that -9 = ¥ - @ for
all @ € IR", prove that # = 7.

3.0.8 Problem. For three vectors i, 7, @ € R?, the scalar triple product
isii- (T x ).
i. Prove that |ii - (7 x @)| equals the volume of the parallelepiped
formed by the vectors i, 7, @ € R3.
ii. Show thati- (0 x @) =7 (W x i) =w- (i X 0).
iii. Demonstrate that the geometric definition of the cross product
satisfies the distributivity property.
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3.0.9 Problem. For any three vectors i, 7, @ € R3, prove the following

identities:
i Ux (Txw)= (- -w)7— (i-9)w,
ii. i x (T x)+7x (®x i)+ x (i xT) =0.

3.1 Essential Inequalities

How DOES THE DOT PRODUCT PRODUCE INEQUALITIES? The ge-
ometric definition of the dot product implies that nonzero vectors
are perpendicular if and only if the angle between them is 77/2. We
typically use another term for this feature.

3.1.0 Definition. Two vectors ¥ and @ are orthogonal if ¥ - @ = 0.
3.1.1 Problem. Which pairs among the three vectors

i:=¢ +V3&, T:=@&+V3&, w:=+V3¢+é—¢e;,
are orthogonal?

Solution. Since we have

i -5 = (1)(1) + (0)(V3) + (V3)(0) =
i@ = (1)(V3) + (0)(1) + (V3)( 1) =
7@ = (1)(V3) + (V3)(1) + (0)(-1) = f
only # and @ are orthogonal. O

Adding two orthogonal vectors gives a right angled triangle. From
the properties of the dot product, we easily obtain the celebrated
relation among the three sides of a right angled triangle.

3.1.2 Proposition (Pythagorean theorem). For any pair of orthogonal
vectors ¥ and @ in R", we have ||+ @||* = ||3||* + ||@||

Proof. Since ¥ and w are orthogonal, we have 7 - @ = 0 and the
properties of the dot product [3.0.2] give

v

1 +@|* = (7 + @) - (

+
=|7]*+7 @+

(7
5 o o 12 5112
@+ @5+ @] = ||F)° +|@)*. O
3.1.3 Theorem (Cauchy-Schwarz inequality). For all ¥, € R", we have
n 2 n ) n )
soal<lollal o (Low) < (LF)(Xet).
i=1

j=1 k=1

Equality holds if and only if the vectors are parallel.
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Figure 3.3: Three vectors in R3
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7

Figure 3.4: A right angled triangle

The inequality for sums was published
in 1821 by A.-L. Cauchy.
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Geometric proof. Since —1 < cos(f) < 1, we have |cos(6)| < 1, and the
geometric definition of the dot product [3.0.0] gives

15| = |[3] @] [cos(6)] < |15 1] -

Equality holds if and only if cos(8) = £1. Hence, either § = 0, which
implies ¥ and @ point in the same direction, or § = 7, which implies
¢ and @ point in the opposite directions. O

Algebraic proof. When @ = 0, both sides of the inequality equal 0, so

we may assume @ # 0. Consider i := & — (%)% € R", which
means that o = (Z%)@ + #. Since #i - @ = 7- W — (%)W -w = 0,
the vectors # and @ are orthogonal. Hence, the Pythagorean theorem
combined with the nonnegative of magnitude imply that

5 @ 5o\ |12 5. )2
|77||2=H<Zi Zﬁ)ww :H(zj “j)w = T e s

Multiplying by |@|* and taking square roots gives the inequality. We
have equality if and only if # = 0 which equivalent to saying that 7 is
a scalar multiple of 0. O

3.1.4 Theorem (Triangle inequality). For all ¥, € R", we have
17+ @] < [[7]] + [[@l]| -

Equality holds if and only if one vector is a nonnegative multiple of the
other.

Geometrically, the triangle inequality asserts that the sum of the
lengths of two sides in a triangle are at least the length of the other
side. Equality occurs when the vertices of the triangle are collinear.

Proof. The properties of the dot product [3.0.0] give

SCALAR PRODUCTS

—

(4

Figure 3.5: Triangle inequality

1+ @|)*=@F+d) F+@)=|3|°+7-@+w-7+ ||@|*> = |5)|* +25- @+ |@|° .

For any ¢ € R, we have ¢ < |c|, so we obtain
15+ = [|3]|* +25 - @ + ||[@|* < ||7)* + 2[5 @] + @] .

Applying the Cauchy-Schwarz inequality yields

2 ~02 - ) 2 - L2 - L2
17+ @|° < [|9]]"+27- @] + ||[@]° < [|F]]"+2[|9]| |[@] + |@]° = (7] + @)

Taking a square root yields the desired inequality. Equality holds if
and only if ¥ - @ = |0 - @| and ¥ is parallel @, which is equivalent to 7
being a nonnegative multiple of w. O

33
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Exercises

3.1.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. The zero vector is orthogonal to every vector.
ii. The triangle inequality shows that one side of a triangle must be
longer than the other two.

3.1.6 Problem. For any two vectors ¢, @ € R", show that

S

2l = @l < 7 -

3.1.7 Problem. For i, 7, @ € R", prove that

(£rom] < (£4) (57) (£)

3.1.8 Problem. For any @,@ € R", consider the function 4: R -+ R
defined by g(t) := (¢ + t@) - (¥ + t@). Explain why ¢(t) > 0 for all
t € R. By interpreting () as a quadratic polynomial in ¢, show that
7| < ||| [[@]|

3.2 Orthogonal Projections

How DO WE FIND THE DISTANCE FROM A POINT TO A LINE? Let

7= I@ be a nonzero vector and let ¢ denote the line through the

points P and Q. Fix a point R and consider the vector @ := RP. To

determine the orthogonal distance from the point R to the line /, it

suffices to express the vector w as the sum of a vector parallel to 7 R
and a vector orthogonal to 7; W = RP = RS + SP. Any vector parallel

to 7 has the form SP = c ¥ for some scalar ¢ € R. If the difference

S

RS=RP-SP=w—c7is orthogonal to 7, then the properties of the
dot product [3.0.0] give

o —

Q v P S
0=R$ = (@&—c?)-F=m-7—c(3-7), . - .

Figure 3.5: Projection onto a line

Ql‘ &

sowededucethatc—%’: _< )v andl@:z?}—(%g)ﬁ’.

Hence, the unique expression of @ as the sum of a vector parallel to
¥ and a vector orthogonal to ¥ is

q w-o\ . (. (W7
w = re— 'U+ w — - | 0| .
V-0 0-0

Thus, the orthogonal distance from R to / is ||1@ | =@ - (Z5)3].
Inspired by this computation, we introduce the following function.
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3.2.0 Definition. The orthogonal projection onto a nonzero vector ¥ in
R" is the function proj;: R" — R" defined, for all w € R", by

o W-T\
proj; (@) := (a ﬂ>v.

V-0

The image of a projection can be viewed as the shadow cast by the
vector w on the line through the head and tail of ¥. The orthogonal Figure 3.6: Visualizing projections
decomposition of a vector @ € R" with respect to ¥ is the expression

= projg(@) + (@ — proj(w@)) .
———

parallel to 7 orthogonal to ¥

3.2.1 Problem. Compute the orthogonal distance from the line through
the points O := (0,0,0) and P := (2,0,1) to the point R := (4,2,1).

Solution. As v := (ﬁ' =2¢€;+¢& and W := 1@ = —4¢; —2¢&; —¢é3, we

have proj;(@) = (22)5 = = (2&; + &), and the desired distance is

|(—48 — 28 — &) + %(2&1 + &)
— % ” (_20 + 18) ¢ —10& + (_5 4 9) EBH Figure 3.7: Orthogonal distance from a

point to a line
= 12+ (~10)2 + (4)2 = 3V30. O

3.2.2 Proposition (Properties of orthogonal projections). For all vectors
#, J, and @ in R" with ¥ # 0, we have the following.
i. If @ is parallel to ¥, then we have proj; () = .
ii. If @ is orthogonal to ¥, then we have proj;(w) =
iii. The function projz is idempotent: proj;(proj;(@))
iv. If i is parallel to T, then we have ||@ — proj;(@)||
equality holds if and only if i = proj; ().

Proof.
i. If @ is parallel to ¥, then there exists a scalar ¢ € R such that
W = cv. It follows that

proj; () = proj;(cv) = ((cv);v) v=c (?Z) T=cd=w.

ii. If @ is orthogonal to ¥, then we have @ - ¥ = 0 which implies that
proj (@) = (%5)7 = 09 =0.
iii. By definition, the vector proj; (@) is parallel to the vector 7 and

part i implies that proj; (proj;(@)) = proj;(@).
iv. From the orthogonal decomposition of @ with respect to 7, we

see that the vector @ — proj;(@) is orthogonal to 7. Since i is
parallel to 7, the vectors @ — proj; (@) and proj;(w) — i are also
orthogonal, and the Pythagorean theorem [3.1.2] shows that

—

— ||(@ — proj(@)) + (projs(@) — #)||* = ||@ — i|? .

|@ — proj;(@)||* + |[projy(@) — @
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The nonnegativity of magnitudes gives ||proj;(@) — i !2 >0, so

2

[ — proja(@)|* < || — projs(@)||* + [[projs(@) " = 1@ |
Taking square roots establishes the desired inequality. We have
equality if and only if ||proj;(@) — #|| = 0 which is equivalent to

il = proj;(). O

K3 ‘

" projs(@) i projy(@)

3.2.3 Remark. The fourth property of orthogonal projections can be

geometrically rephrased as the minimum distance from a point to a , o
Figure 3.8: Minimizing distance from a

line is the orthogonal distance. point to a line

3.2.4 Definition. An altitude of a triangle is a line passing through a
vertex and orthogonal to the line containing the opposite side.

3.2.5 Problem. Prove that all the three altitudes of a triangle intersect R
at a common point.

Solution. Let P, Q, and R be the vertices of a triangle, and let O be
the origin. A point X lies on the altitude through Q if and only if

OX - PR = (0X — 0Q) - (OF — OP) = 0.
r

Similarly, the point X lies on the altitude through R if and only if p Q
(O—>X —OR) - ((ﬁ - (ﬁ) = 0, and the point X lies on the altitude Figure 3.9: Altitudes in a triangle
through P if and only if (Cﬁ( - 6?‘) : (Cﬁ - Cﬁ) = 0. The properties

of the dot product [3.0.0] imply that, for any point X, we have

(OX —00) - (O — OP) + (OX — OR) - (OP — 00) + (OX — OP) - (00 — O)
~ (OX-OR — 0% 0B — 00-OR + 0B-00) + (OX - OB — 0X -00 — OB - Ok + 08 - OF)
1 (0% .00 0% Ok OB 5% + O - Of)

=0.

Thus, a point X lying on two altitudes also lies on the third. O

Exercises

3.2.6 Problem. Determine which of the following statements are true.

If a statement is false, then provide a counterexample.

i. The orthogonal projection is defined for any nonzero vector in
R"™.

i. The orthogonal projection onto a nonzero vector @ is parallel to

~.

—

0.
iii. For any vector @, the vector @ — proj;(@) is orthogonal to 7.
iv. The orthogonal decomposition expresses any vector as the sum
of two nonzero vectors.
v. The minimum distance from a point to a line is the orthogonal
distance.



COPYRIGHT © 2021, GREGORY G. SMITH SCALAR PRODUCTS 37

vi. In any triangle, the altitude and median through a given vertex
coincide.

3.2.7 Problem. Write the vector @ := 3¢; + 2¢€, — 6€3 as the sum of
two vectors, one parallel and one orthogonal, to ¥ := 2¢; — 4é; + €3.

3.2.8 Problem. Given P := (1,2,3), Q := (3,5,7), and R := (2,5,3),
find the distance from R to the line through P and Q.

3.2.9 Problem. Consider three distinct points P, Q, and R.

i. Choose R to be the origin and describe the position vectors £(t)
corresponding to the points on the line through P and Q as a
function of a parameter ¢.

ii. Show that the critical points of the function ||£()|| and ||€(t) Hz
coincide.

iii. Using techniques from calculus, minimize HZ(t) H2 and prove
that the minimum distance is the orthogonal distance.

3.3 Hyperplanes

WHAT LINKS LINES IN 2-SPACE, PLANES IN 3-SPACE, AND THEIR We fgequenﬂy use the variables (x,y,z)
. o in K rather than (x1, x2, x3), and use
ANALOGS IN n-SPACE? These subsets have a uniform description. (x,) in K2 rather than (xy, x2).

3.3.0 Definition. An affine hyperplane in K" consists of all points
(x1,x2,...,x,) € K" that satisfy the equation

ax1+axxo+ - +apxy, =0,
for some scalars a1, 4y, ...,a,, and b in K.

Geometrically, a hyperplane is determined by a point and a vector.
The normal vector of the hyperplane is

—

n:=a1€ +aé+---+a,é, € K".

Sl

If the point P := (p1,p2,...,pn) € K" lies on this hyperplane
meaning that a;p; +axpy + - - - + ay,pn = b, then an arbitrary point
X_:)z (x1,x2,...,%,) € K" lies on this hyperplane if and only if vector
PX is orthogonal to the normal vector 7:

L ==
0=1-PX =ay(x1—p1) +ax(xa—p2) + - +an(xy — pn)
= a1x1 +ax2 + -+ apXy + (a1p1 +a2p2 + -+ anpn)
& b=axy+axxo+ -+ agxy. Figure 3.9: Normal to a hypersurface

—>
Observe that the vector —1i is also orthogonal to PX.
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3.3.1 Remark. In K2, the slope of a line encodes the normal vector. Y

[

Specifically, the equation y = mx + b is equivalent to —mx +y = b

which implies that —m €] + € is the normal vector. y=mx+b

3.3.2 Problem. Find an equation for the hyperplane orthogonal to
8&; — 3&, — 7€, + &5 passing through the point (1,0,-7,1,3) € R®. =~ l > X

m

Solution. An equation is Figure 3.10: Normal to a hypersurface
8(x1—1) —3(xp—0) —0(x3+7) = 7(x4—1)+ (x5 —3) =0
or 8x1 —3xp; —7x4 + x5 = 4. O

3.3.3 Problem. Find an equation for the plane passing through the
origin and parallel to the plane z = 4x — 3y + 8.

Solution. Since a normal vector for both planes is 7 := 4 €] —3¢é; — €3,
the equation of the plane through the origin is 4x — 3y —z = 0. O

3.3.4 Problem. Find the angle between the following two hyperplanes:

2001 —=1) = (xp—0) 4+ (x3—=7) + (x4 +4) — (x5 = 5) +2(x6 +2) =0
—(x14+1) + (x2+8) — (x4 —9) — (x¢—4)=0.
Solution. The angle between the hyperplanes is the angle between
their normal vectors. If 0 is the angle between these hyperplanes,
then equivalent definitions of the dot product [3.0.0] give

—6=02)(=) + (=1)(1) + M)(0) + ()(=1) + (=1)(0) + (2)(=1)
= V12V/4cos(6),

-6 _ _ 3

_ =6 _5
so we have cos(0) = VA and 6 = <. O
A plane in K2 can also be determined by three points, assuming
that they are not collinear.

3.3.5 Problem. Find an equation for the plane containing the three L4
points P := (1,3,0), Q := (3,4, —3), and R := (3,6,2). AN
e

Solution. Since the points P, Q, and R lie in a plane, both of the 2\1\,3\2 1
vectors Iﬁ =2¢€;1+¢é —3¢3and PR =2¢; +3¢é, + 2¢3 also lie in the \ X \
plane. Thus, a normal vector 7 to the plane is given by

= @ X ﬁ — (2 + 9) & + (*6 _ 4) & + (6 _ 2) 2 Figure 3.11: Computing the cross
5 o o product
= 1181 — 1082 +4e3.

Since the point P lies on the plane, we conclude that the equation is
11(x —1) —10(y —3) +4(z —0) = 0 or 10x — 10y + 4z = —19. O

3.3.6 Problem. Find the orthogonal distance from the plane defined by
2x +4y — z = —1 to the point P := (2, —1,3).
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Solution. From the given equation, we see that the normal vector to
the plane is #i := 2¢&; + 4 &, — &3. Since 2(0) +4(0) — (1) = —1, the
point Q := (0,0,1) lies in the plane and we have QP = 2¢&) — &, + 2 &;.
Hence, the orthogonal distance from P to the plane is

Jowih)| - |( 257 o] - 192

[l
_ @@+ (D@ + @)D _ 2

V@R Ve
3.3.7 Problem. Decide which of the three points P := (—1,-1,1),
Q = (-1,-1,-1),and R := (1,1,1) are on the same side of the
plane 2x — 3y + 4z = 4.

Solution. Since we have

2(-1) =3(=1)+4(1)-4=1>0,
2(— )—3( 1)+4(-1)—-4=-7<0,
2(1)—3(1)+4(1)—-4=-1<0,
we see that Q and R lie on one side and P is on the other. O Figure 3.12: Points separated by a plane
Exercises

3.3.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. Each hyperplane has a unique normal vector.
ii. Alinein R® is a hyperplane.
iii. A hyperplane in KK! consists of a single point.
iv. Lines in K? with normal vector & have infinity slope.

3.3.9 Problem. Find a vector parallel to the line of intersection of the
two planes 2x —3y+5=2and 4x+y -3z =7.

3.3.10 Problem. Prove that the orthogonal distance between the hyper-
plane ayx; + axxy + - - - + ayx, = b and the point P := (p1,p2,...,Pn)
is given by

la1p1 +aapa + - - + anpy — b|
¢ﬁ+@+m+ﬁ

3.3.11 Problem. Find the orthogonal distance between the following
skew lines in R3. The first line passes through the points O := (0,0,0)
and P := (—1,—1,1), and the second line passes through the points
Q:=(0,-2,0) and R := (2,0,5).

3.3.12 Problem. Find the orthogonal distance between the following
skew lines in R3. The first line passes through the points O := (0,0, 0)
and P := (—1,—1,1), and the second line passes through the points
Q:=(0,—2,0) and R := (2,0,5).



