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The problem of finding the solutions to a system of linear equations
provides the theoretical and computational foundation for linear
algebra. In this chapter, we introduce linear systems and elementary
row operations, we repackage the features of a linear system in a
matrix, and we present an algorithm for solving linear systems.

4.0 Systems of Linear Equations

How can we find the intersection of a collection of
hyperplanes? A linear equation in the variables x1, x2, . . . , xn is an
equation of the form a1x1 + a2x2 + · · · + anxn = b where constant
term is b 2 K and the coefficients are the scalars a1, a2, . . . , an 2 K.
A linear system, short for a system of linear equations, is a finite
collection of linear equations. A solution to a linear system is a vector
~v := v1~e1 + v2~e2 + · · ·+ vn~en 2 K

n such that the corresponding point,
relative to the origin, lies on each hyperplane in the collection. The
solution set of a linear system is the set of all solutions. The phrase
"to solve the system" means to explicitly describe the solution set.

4.0.0 Problem. Solve the linear system
n x � 2y =�1
�x + 3y = 3

o
. x � 2y = �1

�x + 3y = 3

Figure 4.0: Intersection of two linesGeometric solution. These lines intersect only at the point (3, 2).

4.0.1 Problem. Solve the linear system
n x � 2y =�1
�x + 2y = 3

o
.

x � 2y = �1
�x + 2y = 3

Figure 4.1: Two parallel lines

Geometric solution. The lines are parallel, so there is no solution.

4.0.2 Problem. Solve the linear system
n x � 2y =�1
�x + 2y = 1

o
.

Geometric solution. The lines coincide, so every point on one line
belongs to the solution set. Since the points (�1, 0) and (1, 1) lie on
both lines, the solution set can be described as

�
(1 � t)(�~e1) + t(~e1 +~e2) | t 2 K

 
=
�
(2t � 1, t) | t 2 K

 
.

Alternatively, we also have
�
(1 � s)

� 1
2 ~e2

�
+ s(~e1 +~e2) | s 2 K

 
=
��

s, 1
2 (s + 1)

�
| s 2 K

 
,

because the points (0, 1/2) and (1, 1) also lie on both lines.
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4.0.3 Definition. A linear system is consistent when it has at least one
solution; it is inconsistent when it has no solutions. Geometrically,
a linear system is consistent if its hyperplanes have a nonempty
intersection.

How can we find the solution set of a linear system? Two
linear systems are equivalent if they have the same solution set. The
basic strategy to solve a linear system is to recursively replace a given
linear system with another equivalent one that is easier to solve.
The following three operations, called elementary row operations,
produce equivalent linear systems. As an abbreviation, we use the
vector~rj to denote the j-th equation in a linear system.

A linear system is most often given by
writing each linear equation on a
separate row.

(row add) Replace one equation by the sum of that equation and a
scalar multiple of another. Symbolically, we have~rj + c~rk 7!~rj for
some j 6= k and c 2 K.

(row swap) Interchange two equations or
n
~rj 7! ~rk
~rk 7! ~rj

o
for some j 6= k.

(row multiple) Multiply all the terms in an equation by a nonzero
constant or c~rj 7!~rj for some 0 6= c 2 K.

As we will see, the elementary row operations produce equivalent
linear systems because they are "invertible"; they can be undone by
another elementary operation.

4.0.4 Problem. Solve the linear system

(
x � 2y + z = 0

2y � 8z = 8
�4x + 5y + 9z =�9

)
.

Solution. Elementary row operations give
(

x � 2y + z = 0
2y � 8z = 8

�4x + 5y + 9z =�9

) 1
2~r2 7!~r2����!

(
x � 2y + z = 0

y � 4z = 4
�4x + 5y + 9z =�9

)
~r3+4~r1 7!~r3������!

(
x � 2y + z = 0

y � 4z = 4
� 3y + 13z =�9

)

~r3+3~r2 7!~r3������!
(

x � 2y + z = 0
y � 4z = 4

z = 3

)
~r2+4~r3 7!~r2������!

(
x � 2y + z = 0

y = 16
z = 3

)

~r1�~r3 7!~r1�����!
(

x � 2y = �3
y = 16

z = 3

)
~r1+2~r2 7!~r1������!

(
x = 29

y = 16
z = 3

)
.

Thus, the unique solution is the point (29, 16, 3) 2 R
3.

Verification. We have

(
(29)� 2(16) + (3) = 0

2(16)� 8(3) = 8
�4(29) + 5(16) + 9(3) =�9

)
.

4.0.5 Problem. Solve the linear system

(
y � 4z = 8

2x � 3y + 2z = 1
5x � 8y + 7z = 1

)
.

Solution. Elementary row operations give
(

y � 4z = 8
2x � 3y + 2z = 1
5x � 8y + 7z = 1

)
~r3� 5

2~r2 7!~r3������!

8
<

:

y � 4z = 8
2x � 3y + 2z = 1

� 1
2 y + 2z =� 3

2

9
=

;
~r3+

1
2~r1 7!~r3������!

8
<

:

y � 4z = 8
2x � 3y + 2z = 1

0 = 5
2

9
=

; ,
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so these equivalent systems have no solutions and the original system
is inconsistent.

4.0.6 Problem. Solve the linear system

8
<

:

p
2 i x + y = 0
�x +

p
2 i y + z = 0
�y +

p
2 i z = 0

9
=

;.

Solution. Elementary row operations give
8
<

:

p
2 i x + y = 0
�x +

p
2 i y + z = 0
�y +

p
2 i z = 0

9
=

;
~r1+

p
2 i~r2 7!~r1��������!

8
<

:

�y +
p

2 i z = 0
�x +

p
2 i y + z = 0
�y +

p
2 i z = 0

9
=

;

~r3�~r1 7!~r3�����!

8
<

:
�y +

p
2 i z = 0

�x +
p

2 i y + z = 0
0 = 0

9
=

;
~r2+

p
2 i~r1 7!~r2��������!

(
�y +

p
2 i z = 0

�x � z = 0
0 = 0

)

�~r1 7!~r1����!
(

y �
p

2 i z = 0
�x � z = 0

0 = 0

)
�~r2 7!~r2����!

(
y �

p
2 i z = 0

x + z = 0
0 = 0

)
�!

(
y =

p
2 i z

x = �z
0 = 0

)
,

so the solutions set is

�
�t~e1 +

p
2 i t~e2 + t~e3 | t 2 C

 
=

8
><

>:
t

2

64
�1p
2 i
1

3

75

�������
t 2 C

9
>=

>;
.

Verification. We have

8
<

:

p
2 i(�t) + (

p
2 i t) = 0

�(�t) +
p

2 i (
p

2 i t) + (t) = 0
�(

p
2 i t) +

p
2 i(t) = 0

9
=

;.

Exercises

4.0.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. In a linear system, the same equation can appear more than
once.

ii. A linear system must have more than one linear equation.
iii. In a linear system, the number of equations must equal the

number of variables.
iv. All linear systems have a nonempty solution set.
v. A consistent linear system must have exactly one solution.

vi. A linear system is inconsistent if it has infinitely many solutions.
vii. There are four types of elementary row operations.

viii. Multiplying an equation by 0 produces an equivalent linear
system.

4.0.8 Problem. Solve the linear system

(
y + 4z = �5

x + 3y + 5z = �2
3x + 7y + 7z = 6

)
.
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4.0.9 Problem. Solve the linear system
(

i z1 + (1 + i) z2 = i
(1 � i) z1 + z2 � i z3 = 1

i z2 + z3 = 1

)
.

4.0.10 Problem. Establish that the elementary row operations are
invertible by proving the following identities.

i. For all j 6= k and all c 2 K, show that the row add operations
~rj + c~rk 7! ~rj an~rj � c~rk 7! ~rj compose to the identity in either
order.

ii. For all j 6= k, show that the row swap operation is involutive; it
is its own inverse.

iii. For all 0 6= c 2 K, show that the row multiple operations
c~rj 7!~rj and 1

c~rj 7!~rj compose to the identity in either order.

4.1 Matrices

How can we work efficiently with linear systems? For any
two nonnegative integers m and n, an (m ⇥ n)-matrix is an array of
scalars consisting with m rows and n columns:

The mathematical term "matrix" was
coined in 1850 by J.J. Sylvester

A := [aj,k] =

2

6664

a1,1 a1,2 a1,3 · · · a1,n
a2,1 a2,2 a2,3 · · · a2,n
a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...
am,1 am,2 am,3 · · · am,n

3

7775
.

Two matrices are equal if they have the same number of rows, the
same number of columns, and their corresponding entries are all
equal. The two important matrices associated to the linear system

8
><

>:

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1
a2,1x1 + a2,2x2 + · · · + a2,nxn = b2...

...
...

...
am,1x1 + am,2x2 + · · · + am,nxn = bm

9
>=

>;

are the coefficient matrix and the augmented matrix

A = [aj,k] =

2

64

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

3

75 and

2

64

a1,1 a1,2 · · · a1,n b1
a1,1 a1,2 · · · a1,n b2

...
...

. . .
...

...
am,1 am,2 · · · am,n bm

3

75 .

The elementary row operation introduced for linear systems naturally
extend to matrices.

4.1.0 Problem. Solve the linear system

(
2 x + 2 y = 0

x � 2 y � i z = 0
i x + y + z = 0

)
.
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Solution. Elementary row operations applied to the augmented
matrix associated to this linear system give

2

4
2 2 0 0
1 �2 �i 0
i 1 1 0

3

5
1
2~r1 7!~r1����!

2

4
1 1 0 0
1 �2 �i 0
i 1 1 0

3

5 ~r2�~r1 7!~r2�����!

2

4
1 1 0 0
0 �3 �i 0
i 1 1 0

3

5

~r3�i~r1 7!~r3������!

2

4
1 1 0 0
0 �3 �i 0
0 1 � i 1 0

3

5 (1+i)~r3 7!~r3������!

2

4
1 1 0 0
0 �3 �i 0
0 2 1 + i 0

3

5

~r3+~r2 7!~r3�����!

2

4
1 1 0 0
0 �3 �i 0
0 �1 1 0

3

5 ~r2�3~r3 7!~r2������!

2

4
1 1 0 0
0 0 �3 � i 0
0 �1 1 0

3

5

(�3�i)�1~r2 7!~r2���������!

2

4
1 1 0 0
0 0 1 0
0 �1 1 0

3

5 ~r1+~r3 7!~r1�����!

2

4
1 0 1 0
0 0 1 0
0 �1 1 0

3

5

~r1�~r2 7!~r1�����!

2

4
1 0 0 0
0 0 1 0
0 �1 1 0

3

5 ~r3�~r2 7!~r3�����!

2

4
1 0 0 0
0 0 1 0
0 �1 0 0

3

5

�~r3 7!~r3����!

2

4
1 0 0 0
0 0 1 0
0 1 0 0

3

5
~r2 7!~r3
~r3 7!~r2����!

2

4
1 0 0 0
0 1 0 0
0 0 1 0

3

5 .

Hence, the given linear system is equivalent to
⇢

x1=0
x2=0
x3=0

�
, so the unique

solution is~0 =
h 0

0
0

i
.

The next definition describes the “simplest” matrices obtained via
elementary row operations.

4.1.1 Definition. The leading entry of a row refers to the leftmost
nonzero entry. An (m ⇥ n)-matrix is in reduced row echelon form if it
satisfies the following properties:
• the first r rows are nonzero and the last m � r rows are zero;
• the leading entry in any row is always to the right of the leading

entry of the row above it or, equivalently, when the leading entry
in the j-th row lies in the kj-th column, we have k1 < k2 < · · · < kr

for all 1 6 j 6 r;
• the leading entry in each nonzero row is 1;
• each leading 1 is the only nonzero entry in its column. h 0 0 0 0

0 0 0 0
0 0 0 0

i
,

h 1 ⇤ ⇤ ⇤
0 0 0 0
0 0 0 0

i
,

h 0 1 ⇤ ⇤
0 0 0 0
0 0 0 0

i
,

h 0 0 1 ⇤
0 0 0 0
0 0 0 0

i
,

h 0 0 0 1
0 0 0 0
0 0 0 0

i
,

h 1 0 ⇤ ⇤
0 1 ⇤ ⇤
0 0 0 0

i
,

h 1 ⇤ 0 ⇤
0 0 1 ⇤
0 0 0 0

i
,

h 1 ⇤ ⇤ 0
0 0 0 1
0 0 0 0

i
,

h 0 1 0 ⇤
0 0 1 ⇤
0 0 0 0

i
,

h 0 1 ⇤ 0
0 0 0 1
0 0 0 0

i
,

h 0 0 1 0
0 0 0 1
0 0 0 0

i
,

h 1 0 0 ⇤
0 1 0 ⇤
0 0 1 ⇤

i
,

h 1 0 ⇤ 0
0 1 ⇤ 0
0 0 0 1

i
,

h 1 ⇤ 0 0
0 0 1 0
0 0 0 1

i
,

h 0 1 0 0
0 0 1 0
0 0 0 1

i
.

Table 4.1: The distinct reduced row
echelon forms for a (3 ⇥ 4)-matrix

The reduced row echelon can be visualized as
2

666666664

0 0 · · · 1 ⇤ ⇤ · · · ⇤ 0 ⇤ ⇤ · · · ⇤ 0 ⇤ ⇤ · · · ⇤
0 0 · · · 0 0 0 · · · 0 1 ⇤ ⇤ · · · ⇤ 0 ⇤ ⇤ · · · ⇤
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 ⇤ ⇤ · · · ⇤
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0

3

777777775

,

where ⇤ denotes an arbitrary scalar.
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The next subsection shows that each matrix is equivalent to a
unique matrix in reduced row echelon form and that the reduced
row echelon form can be obtained by a (non-unique) sequence of
elementary row operations.

4.1.2 Problem. Find the reduced row echelon form of the matrix
2

4
0 3 �6 6 4 �5
3 �7 8 �5 8 9
3 �9 12 �9 6 15

3

5 .

Solution. Elementary row operations give
2

4
0 3 �6 6 4 �5
3 �7 8 �5 8 9
3 �9 12 �9 6 15

3

5
1
3~r3 7!~r3����!

"
0 3 �6 6 4 �5
3 �7 8 �5 8 9
1 �3 4 �3 2 5

# ~r3 7!~r1
~r1 7!~r3����!

"
1 �3 4 �3 2 5
3 �7 8 �5 8 9
0 3 �6 6 4 �5

#

~r2�3~r1 7!~r2������!
"

1 �3 4 �3 2 5
0 2 �4 4 2 �6
0 3 �6 6 4 �5

# 1
2~r2 7!~r2����!

"
1 �3 4 �3 2 5
0 1 �2 2 1 �3
0 3 �6 6 4 �5

#
~r1+3~r2 7!~r1������!

"
1 0 �2 3 5 �4
0 1 �2 2 1 �3
0 3 �6 6 4 �5

#

~r3�3~r2 7!~r3������!
"

1 0 �2 3 5 �4
0 1 �2 2 1 �3
0 0 0 0 1 4

#
~r1�5~r3 7!~r1������!

"
1 0 �2 3 0 �24
0 1 �2 2 1 �3
0 0 0 0 1 4

#
~r2�~r3 7!~r2�����!

"
1 0 �2 3 0 �24
0 1 �2 2 0 �7
0 0 0 0 1 4

#
.

Exercises

4.1.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. A matrix must have the same number of row and columns.
ii. The matrix entry aj,k lies in the jth row and the kth column.

iii. For a given linear system, the associated augmented matrix has
one more row than the associated coefficient matrix.

iv. If a linear system has m equations and n variables, then the
associated augmented matrix has m rows and n + 1 columns.

v. The zero matrix is in reduced row echelon form.

4.1.4 Problem. Find the reduced row echelon form of the matrix
2

64

1 1 2
�1 2 5

1 �1 �3
1 0 �1

3

75 .

4.1.5 Problem. List all of the distinct reduced row echelon forms for a
(4 ⇥ 6)-matrix.

4.1.6 Problem. Examine compositions of the row add operations.
i. For all j 6= k and all c, d 2 K, show that the composition, in

either order, of row add operations~rj + c~rk 7!~rj and~rj + d~rk 7!
~rj equals the row add operation~rj + (c + d)~rk 7!~rj.


