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6.2 Linear Independence

What relation extends being parallel from a pair to an
arbitrary collection of vectors? The essential insight is to focus
on the linear combinations that are equal to the zero vector.

6.2.0 Definition. Let m and n be positive integers. The vectors
~a1,~a2, . . . ,~an 2 K

m are linearly dependent if there exists scalars
c1, c2 . . . , cn 2 K, not all zero, such that c1~a1 + c2~a2 + · · ·+ cn~an =~0.
Conversely, the vectors ~a1,~a2, . . . ,~an are linearly independent if
the vector equation c1~a1 + c2~a2 + · · · + cn~an = ~0 implies that
c1 = c2 = · · · = cn = 0.

To decide whether a collection of vectors is linear dependent or
linearly independent, we solve a homogeneous linear system.

6.2.1 Problem. Consider ~a1 :=
⇥
1 2 3

⇤
T, ~a2 :=

⇥
4 5 6

⇤
T, and

~a3 :=
⇥
2 1 0

⇤
T. Are the vectors ~a1,~a2,~a3 linearly independent?

Solution. Set A := [~a1 ~a2 ~a3] and solve the homogeneous linear
system A~x =~0. The row reduction algorithm [4.2.0] gives

"
1 4 2
2 5 1
3 6 0

# ~r2 � 2~r1 7!~r2
~r3 � 3~r1 7!~r3�������!

⇠

"
1 4 2
0 �3 �3
0 �6 �6

#
� 1

3~r2 7!~r2������!
⇠

"
1 4 2
0 1 1
0 �6 �6

# ~r1 � 4~r2 7!~r1
~r3 + 6~r2 7!~r3�������!

⇠

"
1 0 �2
0 1 1
0 0 0

#
.

Since the solution set is Span
�⇥

2 �1 1
⇤

T
�
, the nonzero linear relation

2~a1 �~a2 +~a3 =~0 certifies that the vectors are linearly dependent.

6.2.2 Problem. Prove that a single vector ~a 2 K
m is linear independent

if and only if it is nonzero.

Solution. The set {~a} is linearly dependent if and only if there exists
a nonzero scalar c 2 K such that c~a = ~0. It follows that c aj = 0, for
all 1 6 j 6 m, so we obtain aj = c�1(c aj) = c�1(0) = 0 and ~a =~0.

6.2.3 Problem. Show that the two vectors ~a1,~a2 2 K
m are linearly

dependent if and only if we have ~a1 =~0 or ~a2 is a multiple of ~a1.

Solution.
): Suppose that c1~a1 + c2~a2 = ~0 where at least one of the scalars

c1, c2 2 K is nonzero. When c2 6= 0, we have ~a2 = c1
c2
~a1. If c2 = 0,

then we must have c1 6= 0 and ~a1 =~0.
(: When ~a1 =~0, the vector equation 1~a1 + 0~a2 =~0 certifies that the

vectors are linear dependent. Similarly, when ~a2 = c~a1, the vector
equation c~a1 �~a2 =~0 certifies linear dependence.

As a counterpart to our universal consistency proposition [6.1.0],
we identify homogeneous linear systems with a unique solution.
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6.2.4 Proposition (Characterizations of a unique solution). Fix positive
integers m and n. For any (m ⇥ n)-matrix A, the following are equivalent.
a. The homogeneous linear system A~x =~0 has only the zero solution.
b. The zero vector~0 is a unique linear combination of the columns of A.
c. The columns of the matrix A are linearly independent.
d. The reduced row echelon form of A has a leading one in each column.
e. The rank of the matrix A equals n.

Proof. Let ~a1,~a2, . . . ,~an 2 K
m denote the columns of the matrix A.

a ) b: We prove the contrapositive. When~0 2 K
n is a nonzero linear

combination of the columns, there are scalars v1, v2, . . . , vn 2 K,
not all zero, such that v1~a1 + v2~a2 + · · ·+ vn~an = ~0. Hence, the
vector ~v 2 K

n is a nonzero solution to the homogeneous linear
system A~x =~0.

b ) c: We again prove the contrapositive. When the columns are
linearly dependent, there exists scalars v1, v2, . . . , vn 2 K, not all
zero, such that v1~a1 + v2~a2 + · · ·+ vn~an = ~0. Since we also have
0~a1 + 0~a2 + · · ·+ 0~an = ~0, we see that the zero vector~0 is not a
unique linear combination of the columns in A.

c ) d: Once again, we prove the contrapositive. Having a column
in the reduced row echelon form of the matrix A that does not
contain a leading one implies that rank(A) < n. Proposition 6.0.4
shows that the homogeneous linear system A~x = ~0 has infinitely
many solutions. Having a nonzero solution ~v 2 K

n to the ho-
mogeneous linear system A~x = ~0 establishes that the vectors
~a1,~a2, . . . ,~an 2 K

m are linearly dependent.
d ) a: When the reduced row echelon form of the matrix A has

a leading one in every column, we have rank(A) = n. Hence,
Proposition 6.0.4 shows that the homogeneous linear system
A~x =~0 has a unique solution.

d , e: From the definition of rank, we see that the rank of the matrix
A equals n if and only if every column in the reduced row echelon
form contains a leading one.

6.2.5 Problem. Determine whether the following sets of vectors are
linearly dependent.

i.

("
1
7
6

#
,

"
2
0
9

#
,

"
3
1
5

#
,

"
4
1
8

#)
ii.

("
2
3
5

#
,

"
0
0
0

#
,

"
1
1
8

#)
iii.

8
><

>:

2

64
�2

4
6

10

3

75 ,

2

64
3
6
9

15

3

75

9
>=

>;

Solution.
i. Let A be the (3 ⇥ 4)-matrix whose columns are the given vectors.

The basic bounds on rank [4.2.3] show that rank(A) 6 3 < 4, so
the characterization of a unique solution proves that the given
vectors are linearly dependent.
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ii. Since~0 belongs to the set, the vectors are linearly dependent.
iii. Although the second vector seems to be 3

2 times the first vector,
this relation only holds for the last three pairs of entries and fails
for the first pair. Thus, neither of the vectors is a multiple of the
other, so the vectors are linearly independent.

Exercises

6.2.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. A linearly independent set has not linear relations.
ii. The zero vector can never belong to a linearly independent set.

iii. Every set with only one vector is linearly independent.
iv. The column vectors in a matrix are linearly independent if

and only if the corresponding homogeneous linear system has
infinitely many solutions.

v. If a matrix has more columns than rows, then the column vec-
tors are linearly dependent.

vi. For a square matrix, its columns are linearly independent if and
only if its rank equals the number of rows.

vii. For a square matrix, its columns are linearly independent if and
only if they span the ambient coordinate space.

6.2.7 Problem. Prove that a set of vectors, which has more elements
than the number of entries in any given vector, is linearly dependent.
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The product of two matrices is more complicated than matrix arith-
metic. In this chapter, we defined this binary operation, visualize it
using directed graphs, and start to explore of invertibility.

7.0 Matrix Multiplication

How should we define matrix multiplication? When a
matrix A multiplies a vector ~v, it transforms ~v into the vector A~v. If
this vector is then multiplied by the matrix B, the resulting vector is
B(A~v). We want to represent the composite mapping ~v 7! B(A~v) as
multiplication by a single matrix B A, so that B(A~v) = (B A)~v.

To motivate the formal definition, let A be an (m ⇥ n)-matrix, let B

an (`⇥ m)-matrix, and let ~v 2 K
n. If ~a1,~a2, . . . ,~an denote the columns

of the matrix A, then we have A~x = v1~a1 + v2~a2 + · · ·+ vn~an 2 K
m.

The linearity of matrix multiplication [5.0.5] gives

B(A~x) = B(v1~a1)+B(v2~a2)+ · · ·+B(vn~an) = v1(B~a1)+ v2(B~a2)+ · · ·+ vn(B~an) 2 K
` .

In particular, we have B(A~x) =
⇥
B~a1 B~a2 · · · B~an

⇤
~v.

7.0.0 Definition. Fix three positive integers `, m, and n. Let A be an
(m ⇥ n)-matrix whose columns are the vectors ~a1,~a2, . . . ,~an 2 K

m.
For any (`⇥ m)-matrix B, the matrix product BA is the (`⇥ n)-matrix
whose columns are the vectors B~a1, B~a2, . . . , B~an 2 K

`.

We may compute the matrix product


2 3
1 �2
0 �3

�⇥ 4 3 5 0
1 �2 3 �4

⇤
in two

slightly different ways. Since we have
"

2 3
1 �2
0 �3

# 
4
1

�
= 4

"
2
1
0

#
+

"
3

�2
�3

#
=

"
11
2

�3

#
,

"
2 3
1 �2
0 �3

# h
3

�2

i
= 3

"
2
1
0

#
� 2

"
3

�2
�3

#
=

"
0
7
6

#
,

"
2 3
1 �2
0 �3

# h
5
3

i
= 5

"
2
1
0

#
+ 3

"
3

�2
�3

#
=

"
19
�1
�9

#
,

"
2 3
1 �2
0 �3

# h
0

�4

i
= 0

"
2
1
0

#
� 4

"
3

�2
�3

#
=

"
�12

8
12

#
,

the matrix product is
"

2 3
1 �2
0 �3

# h
4 3 5 0
1 �2 3 �4

i
=

2

4
(2)(4) + (3)(1) (2)(3) + (3)(�2) (2)(5) + (3)(3) (2)(0) + (3)(�4)
(1)(4) + (�2)(1) (1)(3) + (�2)(�2) (1)(5) + (�2)(3) (1)(0) + (�2)(�4)
(0)(4) + (�3)(1) (0)(3) + (�3)(�2) (0)(5) + (�3)(3) (0)(0) + (�3)(�4)

3

5

=

"
11 0 19 �12

2 7 �1 8
�3 6 �9 12

#
.
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7.0.1 Remark. Matrix multiplication may be reinterpreted using the
dot product. When the matrix product is defined, the (i, k)-entry of
B A is dot product of the i-th row in B with the k-th column in A. For
all 1 6 i 6 `, all 1 6 j 6 m, and all 1 6 k 6 n, let bi,j 2 K be the
(i, j)-entry in B and let aj,k 2 K be the (j, k)-entry in A. With this
notation, the (i, k)-entry of the product B A is

m

Â
j=1

bi,j aj,k = bi,1 a1,k + bi,2 a2,k + · · ·+ bi,m am,k .

7.0.2 Problem. Compute both products of the following matrices:

M :=

"
5 1
3 �2
0 7

#
N :=

h
2 0 1
4 3 �1

i
.

Solution. We have

M N =

"
5 1
3 �2
0 7

# h
2 0 1
4 3 �1

i
=

"
14 3 �4
�2 �6 6
28 21 �7

#
, N M =

h
2 0 1
4 3 �1

i "5 1
3 �2
0 7

#
=

h
10 9
29 �5

i
.

These matrix products do not have the same size and no two entries
are equal.

For matrix multiplication, the matrices giving rise to the identity
operator have a simple description.

7.0.3 Definition. For any positive integer n, the identity matrix is the
(n ⇥ n)-matrix

In :=
⇥
~e1 ~e2 · · · ~en

⇤
=

⇥
dj,k

⇤
=

2

664

1 0 · · · 0
0 1 · · · 0...

...
. . .

...
0 0 · · · 1

3

775 .

The subscript on the square matrix I are frequently omitted when the
number of rows or columns is clear from the context.

7.0.4 Proposition (Properties of matrix multiplication). Let A, B, C

be matrices for which the indicated sums and products are defined. For any
scalar c 2 K, we have the following properties:

(identity) Im A = A = A In (B A)T = A
T

B
T

(associativity) C(B A) = (C B)A c(B A) = (c B)A = B(c A)

(distributivity) C(B + A) = C B + C A (C + B)A = C A + B A

Proof. For all 1 6 j 6 m and all 1 6 k 6 n, let aj,k 2 K denote the
(j, k)-entry in the matrix A and let ~ak 2 K

m denote the k-th column of
A. It follows that ~ak =

⇥
a1,k a2,k · · · am,k

⇤
T. Since ~ej ·~ak = aj,k and

~ak ·~ej = ak,j, we deduce that Im A = A = A In.
Similarly, for all 1 6 i 6 ` and all 1 6 j 6 m, let bi,j 2 K be the

(i, j)-entry in the matrix B. The definition of matrix multiplication
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implies that the (i, k)-entry in B A is Âm
j=1 bi,j aj,k and the (k, i)-entry in

A
T

B
T is Âm

j=1 aj,k bi,j, so the commutativity of multiplication of scalars
implies that (B A)T = A

T
B

T.
Finally, the general definition of matrix multiplication and the

linearity of matrix multiplication [5.0.5] yield

C(B A) = [C(B~a1) C(B~a2) · · · C(B~an)] = [(C B)~a1 (C B)~a2 · · · (C B)~an] = (C B)A ,

c(B A) = [c(B~a1) c(B~a2) · · · c(B~an)] = [(c B)~a1 (c B)~a2 · · · (c B)~an] = (c B)A

= [c(B~a1) c(B~a2) · · · c(B~an)] = [B(c~a1) B(c~a2) · · · B(c~an)] = B(c A) ,

C(B + A) =
⇥
C(~b1 +~a1) C(~b2 +~a2) · · · C(~bn +~an)

⇤

=
⇥
C~b1 + C~a1 C~b2 + C~a2 · · · C~bn + C~an

⇤
= C B + C A ,

(C + B)A = [(C + B)~a1 (C + B)~a2 · · · (C + B)~an]

= [C~a1 + B~a1 C~a2 + B~a2 · · · C~an + B~an] = C A + B A

which establishes the other four properties.

7.0.5 Warning. There are some significant differences between matrix
products and products of scalars.
• The product of two matrices depends on the order of the factors:

h
1 0
0 0

i h
0 1
0 0

i
=

h
0 1
0 0

i
6=

h
0 0
0 0

i
=

h
0 1
0 0

i h
1 0
0 0

i
.

• The product of two nonzero matrices may equal zero:
h
0 1
0 0

i h
1 0
0 0

i
=

h
0 0
0 0

i
.

• The cancellation property does not hold for matrix multiplication.
The matrix equation AB = AC does not imply B = C:

h
0 1
0 0

i h
1 0
0 0

i
=

h
0 0
0 0

i
=

h
0 1
0 0

i h
0 1
0 0

i
, but

h
1 0
0 0

i
6=

h
0 1
0 0

i
.

7.0.6 Notation. For any square matrix A and any nonnegative integer
k, the k-fold product of A is denoted by

A
k := A A · · ·A| {z }

k times

;

it is product of k copies of A. The “empty” product is A
0 = I.

7.0.7 Problem. For N =

"
0 1 0
0 0 1
0 0 0

#
, compute N

k for all k 2 N.

Solution. We have N
0 = I, N

1 = N,

N
2 =

"
0 1 0
0 0 1
0 0 0

# "
0 1 0
0 0 1
0 0 0

#
=

"
0 0 1
0 0 0
0 0 0

#
, N

3 =

"
0 1 0
0 0 1
0 0 0

# "
0 0 1
0 0 0
0 0 0

#
=

"
0 0 0
0 0 0
0 0 0

#
,

and N
k = 0 for all k > 3.
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Exercises

7.0.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Matrix multiplication is defined for any two matrices.
ii. The product of two matrices is a matrix.

iii. The entry in a product of matrices equals the dot product of the
corresponding row and column.

iv. The identity matrix can have any size.
v. Matrix multiplication is never commutative.

7.0.9 Problem. Let A be a square matrix. If the linear system A
2~x =~0

has infinitely many solutions, then prove that the linear system
A~x =~0 also has infinitely many solutions.

7.0.10 Problem. The trace of an (n ⇥ n)-matrix A := [aj,k] is the sum
of its diagonal entries:

tr(A) := a1,1 + a2,2 + · · ·+ an,n =
n

Â
j=1

aj,j .

i. Prove that the trace is linear. In other words, show that, for
any (n ⇥ n)-matrices A, B and any scalars c, d 2 K, we have
tr(c A + d B) = c tr(A) + d tr(B).

ii. If A and B are (n ⇥ n)-matrices, then prove that tr(AB) = tr(BA).
iii. For n > 1, show that the matrix equation XY � YX = I has no

solutions for (n ⇥ n)-matrices X and Y.

7.1 Adjacency Matrices

How can we visualize matrix multiplication? A mathematical
structure called a directed graph provides one answer.

7.1.0 Definition. A directed graph G is an order pair (V, E) where
• V := {1, 2, . . . , n} is a finite set whose elements are called vertices,
• E is a set of ordered pairs of vertices called edges.
The edge (j, k) 2 E is drawn as an arrow from the j-th vertex to the
k-th vertex. The j-th vertex is the tail of the edge (j, k) and the k-th
vertex is the head of the same edge.

1

2

3

T

Figure 7.0: A small directed graph

The defining data of a directed graph can be encoded in a matrix.

7.1.1 Definition. For any directed graph G, the adjacency matrix AG is
a square matrix whose rows and columns correspond to the vertices
of G. The (j, k)-entry in AG is the number of edges in G from the k-th
vertex to the j-th vertex.
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1

2

3

4

H

Figure 7.1: A larger directed graph

For our two explicit examples, the adjacency matrice and some of
their powers are:

AT =

"
0 1 1
0 0 0
0 1 0

#
A

2
T =

"
0 1 0
0 0 0
0 0 0

#
A

3
T =

"
0 0 0
0 0 0
0 0 0

#

AH =

2

64
1 1 0 0
1 1 1 0
1 1 0 1
1 0 1 0

3

75 A
2
H =

2

64
2 2 1 0
3 3 1 1
3 2 2 0
2 2 0 1

3

75 A
3
H =

2

64
5 5 2 1
8 7 4 1
7 7 2 2
5 4 3 0

3

75

A
4
H =

2

64
13 12 6 2
10 19 8 4
18 16 9 2
12 12 4 3

3

75 A
5
H =

2

64
33 31 14 6
51 47 23 8
45 43 18 9
31 28 15 4

3

75 A
6
H =

2

64
84 78 37 14

129 121 55 23
115 106 52 18
78 74 32 15

3

75

7.1.2 Definition. A walk in the directed graph G is a sequence of
edges e1, e2, . . . , e` where the tail of ej+1 equals the head of ej for
all 1 6 j < `. The length of a walk is the number of edges in the
sequence. Each vertex gives a distinct walk of length 0.

For example, the directed graph T has a
unique path of length 2 from the second
vertex to first vertex.

Multiplication of the adjacency matrix with itself beautifully
enumerates all of the walks in a directed graph.

7.1.3 Proposition. Let AG be the adjacency matrix of a directed graph G.
For any nonnegative integer `, the (j, k)-entry of A

`
G is the number of walks

with length ` from the k-th vertex to the j-th vertex.

Inductive proof. When ` = 0, we have A
0
G = I and the vertices are

the walks of length 0, so the base case holds. Assume the proposition
holds for some nonnegative integer ` and consider A

`+1
G = A

`
G AG.

Let n be the number of vertices in G. For all 1 6 j 6 n and all
1 6 k 6 n, let aj,k denote the (j, k)-entry in adjacency matrix AG.
The definition of the adjacency matrix guarantees that aj,k equals
the number of walks of length 1 in G from the k-th vertex to the j-th
vertex. Similarly, if bi,j denotes the (i, j)-entry in A

`
G for all 1 6 i 6 n

and all 1 6 j 6 n, then the induction hypothesis implies that bi,j
equals the number of walks of length ` in G from the j-th vertex to
the k-th vertex. By concatenating walks at the j-th vertex, we see
that there are exactly bi,j aj,k walks of length `+ 1 in G from the k-th
vertex to the i-th vertex passing through the j-th vertex at second
step. By summing over all possible choices for the j-th vertex, we see
that there are bi,1 a1,k + bi,2 a2,k + · · ·+ bi,n an,k walks of length `+ 1
in G from the k-th vertex to the i-th vertex. From the dot-product
reinterpretation of matrix multiplication [7.0.1], we recognize this
sum as the (i, k)-entry in the product A

`
G AG = A

`+1
G .

To extend this ideas to non-square matrices, we focus on a special
class of directed graphs.
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7.1.4 Definition. A bipartite directed graph is a directed graph
whose vertices can be divided into two disjoint sets such that the first
contains all tails and the second contains all heads. In particular, no
vertex is both a tail and a head.

1 2

3 4 5

P

Figure 7.2: A bipartite directed graph7.1.5 Definition. For a bipartite directed graph G, the biadjacency
matrix BG is a matrix whose columns correspond to the vertices that
are the tail of some edge and whose rows correspond to the vertices
that are the head of some edge. The (j, k)-entry of the biadjacency BG
is the number of edges in G from the k-th vertex to the j-th vertex.

1 2 3

4 5 6

Q

Figure 7.3: Another bipartite directed
graph

The biadjacency matrices for our two
bipartite directed graphs are

BP =

"
1 1
0 1
1 1

#

BQ =

"
1 1 0
1 0 1
1 1 1

#
.

1 2

3 4 5

6 7 8
Figure 7.4: Merging two bipartite
directed graphs

The product of biadjacency matrices is

BQ BP =

"
1 2
2 2
2 3

#

Generalizing our insight for adjacency matrices, the product of
biadjacency matrices also has an elegant combinatorial interpretation.

7.1.6 Proposition. Let G and H be bipartite directed graphs such that the
heads in G correspond to the tails in H. If BG and BH are the associated
biadjacency matrices, then the (i, k)-entry of the product BH BG is the
number of walks from the k-th tail in G to the i-th head in H in the directed
graph obtained by identifying the heads in G with the tails in H.

Proof. Let ` be the number of heads in H, let m be the number of tails
in H (or equivalently heads in G), and let n be the number of tails in
G. For all 1 6 j 6 m and all 1 6 k 6 n, let aj,k denote the (j, k)-entry
in the adjacency matrix BG. The definition of the biadjacency matrix
ensures that aj,k equals the number of walks of length 1 in G from
the k-th vertex to the j-th vertex. Similarly, let bi,j, for all 1 6 i 6 `

and all 1 6 j 6 m, denotes the (i, j)-entry in the adjacency matrix
BH . Again, the definition of the biadjacency matrix ensures that bi,j
equals the number of walks of length 1 in H from the i-th vertex to
the j-th vertex. By concatenating walks at the j-th vertex, we see that
there are bi,j aj,k walks of length 2 in the merged graph from the k-th
vertex the i-th vertex passing through the j-th vertex. Summing over
all possible choices for the intermediate vertex, we see that there
are bi,1 a1,k + bi,2 a2,k + · · ·+ bi,m am,k walks of length 2 in the merged
graph from the k-th vertex to the i-th vertex. From the dot-product
reinterpretation of matrix multiplication [7.0.1], we recognize this
sum as the (i, k)-entry in the product BH BG.

7.1.7 Remark. To create an equivalence between directed graphs and
matrices, we consider weighted graphs. A directed graph is weighted
if each edge (k, j) has a weight aj,k 2 K. In the weighted biadjacency
matrix BG, the (j, k)-entry equals the weight aj,k 2 K. Every matrix is
the weighted biadjacency matrix of some weighted bipartite directed
graph. The weight of a walk to be the product of the weights on its
edges; a walk of length 0 has weight 1. Each entry in a product of
matrices may be viewed as the sum of weighted walks between the
appropriate vertices in a weighted directed graph.


