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Determinants

Surprisingly, the idea that a single number determines if a linear
system has a unique solution predates the development of matrix
theory. This chapter details the various properties that determine this
number and focuses on a recursive method for calculating it.

10.0 Overview of Determinants

Although the term "determinant" was

WHAT IS THE MOST VALUABLE SCALAR ATTACHED TO A MATRIX? To . . ..
introduced into mathematics in 1802 by

every square matrix A, we associate scalar called its determinant. C.F. Gauss, A.-L. Cauchy first used the
word "determinant" in 1812 as defined
10.0.0 Strategy. For each nonnegative integer 7, the determinant in this chapter.

det: K"*" — K is a function from the set of all (n x n)-matrices

to the underlying field of scalars. There are many formulas for the
determinant and all of them are complicated when # is large. To
understand the determinant, we employ the following steps.

e Choose one formula as the definition of the determinant.

e Show that the chosen formula satisfies certain key properties.

e Show that these key properties determine a unique function.

e Deduce other formulas by showing they satisfy the key properties.

Fix a nonnegative integer n and consider an (1 X n)-matrix A
whose (j, k)-entry is ajp € Kforall<j<nandalll <k < n. Let
A(j, k) denote the ((n — 1) x (n — 1))-submatrix of A obtained by
deleting the j-th row and the k-th column.

10.0.1 Definition (Expansion along first row). The determinant of the
(0 x 0)-matrix is 1. For all positive integers n, the determinant of the
(n x n)-matrix A is recursively defined by the formula

det(A) := a1y det(A(1, 1)) —apodet(A(1,2)) + - + (—1)""ay , det(A(L, 7))

= Y (~1)F et (AL B))
k=1

10.0.2 Remark. This definition implies that the determinant of a
(1 x 1)-matrix is just the unique entry and recovers the formula for
(2 x 2)-matrices appearing in Problem 7.2.4; det([c]) = ¢(1) = ¢ and

det[[z :ﬂ] = adet([d]) — cdet([b]) = ad — bc.
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The next size of matrices also have an recognizable determinant;
compare with Figure 2.9.

10.0.3 Proposition. For any (3 x 3)-matrix, we have

a1,1 412 413
det[ a1 A2 A23| | = A1,142,2033 + A12023431 + 13421432 — 413422431 — A1,142,1432 — 412021433 -
as1 asp 433

+o o+ +
Proof. The definition of the determinant gives ANEN
1 M2 413 411 42
a1 a2 43 21 G22 A23 421 422
det| [a21 a22 a23 S0X0 XN\
a3y asp A3j ’.‘113/1 :‘113,2 :fl3,3 asz1 asp
azn a a1 a ax1 a -
=a11 det [ [aii a?’ﬂ ] —a1,2 det [ [ag'i aig] ] +a13 det [ {uii a;i] ] Figure 10.0: The determinant is the sum
’ ’ ’ ’ ’ ’ of the products along the solid diag-
= a1,1a2,033 — A1,142,3032 — A1,2021433 + a1202,3431 onals minus the sum of the products
along the dotted diagonals.
+a1,302,1a32 — 01322031 - [
3 00 0 O
-7 20 0 O
10.0.4 Problem. Compute det 9-51 2 0
9 75 4 -2
6 30-1 0
Solution. We have
3 00 0 O 20 0 0
-7 20 0 O 51 2 0
det 9 51 2 0||=(3)det
75 4 =2
9 75 4 -2 30 -1 0
6 30-1 0
1 2 0
=(3)(2)det| |5 4 -2
0-1 0
_ 4 -2 5 =2
=ofea{[ 3 73]) —2eafs 73])
=6(—2)+6(—2)(0) = —12. O

10.0.5 Lemma (Lower triangular determinants). For any lower triangular
matrix, the determinant is the product of the diagonal entries.

Inductive proof. Let A be an lower triangular (n x n)-matrix. The base
case n = ( is vacuous, because the empty product is the multiplica-
tive identity. Assume the claim holds for some nonnegative integer n.
The definition of the determinant and the induction hypothesis give

a1 o .-. 0

Ay azp -+ 0 azp o 0
det(A) = det :' :/ .. : = al,l det . c. . :

ai’;,l a}’.l,z e al’;,}’l an,2 e a?’l,i’l

=a11(a20a33 -+ Anp) - 0O
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10.0.6 Theorem (Key determinantal properties). The determinant satisfies
the following three properties.

(identity) The determinant of an identity matrix equals 1.

(linearity) The function det is linear in each column of the matrix.
(vanishing) When two adjacent columns are equal, the determinant is 0.

Proof. Let dy,dy,...,d, € K" be the columns of the (n x n)-matrix A.

(identity): Since the identity matrix I is a lower triangular with 1s on
the diagonal, Lemma 10.0.5 establishes that det(I) = 1.

(linearity): We proceed by induction on n. The base case n = 0 is
vacuous. Suppose that the j-th column of A is a linear combination
of two vectors. More explicitly, we write d; = ¢ ¥ + d @ for some
7, w € K" and ¢,d € K and set

[
[
[

B := [d;

C::[

d

9 aj_lwaj+1... an].

IR u]’*lva]url“'

[
N1

1

The induction hypothesis guarantees that the determinant of each
((n—1) x (n —1))-matrix A(1,k) is linear in the j-th column for all
j < k and the determinant of each ((n — 1) x (n — 1))-matrix A(1, k)
is linear in the (j — 1)-st column for all j > k. Hence, we obtain

n
det(A) = Y_(—1)"1ay; det(A(1,k))
k=1
j=1 . A
=Y (-1 ay, det(A(L k) + (—1)/ " ay; det(A(L))) + Z 1)y, det(A(1K))
k=1 k=j+1

( 1) g, [c det(B(1,k)) +d det(C(i,fc))] (=" (cvj + dw;) det(A(

n

Z by, det(B(i,ic))] +d [ i(q)k“ by det(C(1, fc))]

k=1

det(B) +d det(C),

I
/— »M

which proves thet the determinant is linear in the j-th column.
(vanishing): We again proceed by induction on n. When n = 2, we
have [?) g} = ab — ba = 0 for any a,b € K. Suppose that the i-th
and (i + 1)-st columns of A are equal. The induction hypothesis
implies that at most two summands in the expansion are nonzero:

n
det(A) = Y (=1)F1ay; det(A(1k))
1

k=
(_1) (au det(A(1, D) — a1 det(A(T,i/Jr\l))) .

Since the i-th and (i + 1)-st rows are equal, we see that a1 ; = a7 11
and A(1,7) = A(1,i+ 1). Hence, we conclude that det(A) = 0
because the signs in the expansion alternate. O

(1.7)
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10.0.7 Remark. Since the determinant is linear in each column, we have

1 245 (2)(2) 1 2 (2)(2) 15 (2)(2)
det| [3 4+6 (2)(1)|| =det||3 4 (2)(1)|| +det] |3 6 (2)(1)
2 —=1+3 (2)(0) 2 -1 (2)(0) 2 3 (2)(0)
1 22 152
:(2)det[ 3 41 +(2)det[ 36 1” .
2 -10 230

Exercises

10.0.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. The determinant is defined for every matrix.
ii. Multiplying a column of a matrix by a scalar has the effect of
multiplying the determinant by the same scalar.
iii. The determinant of a square zero matrix is zero.
iv. For any nonnegative integer n and any scalar ¢ € KK, we have
det(cI,) = "

10.1 Properties of Determinants

WHAT PROPERTIES DOES THE DETERMINANT ENJOY? Relying only the
key determinantal properties [10.0.6], we enumerate several useful
consequences. Throughout, let n be a nonnegative integer and let
dq,dy,...,d,; € K" denote the columns of an (n x n)-matrix A.

10.1.0 Proposition (Zero column vanishing). When a matrix has a
column of zeros, its determinant equals 0.

Proof. In the matrix A, suppose that @; = 0 = 04, for some column
index 1 < i < n. Linearity of the determinant [10.0.6] in the i-th
column gives

det([dy dp -~ djq @ i1 Giyp - dn))
= det([dy dp --- dj_q 0d; djy1 Giyo - dn))
= (0)det([d dp -+ di—y @ @41 Bigp - dn)) = 0. O

10.1.1 Lemma (Invariance under adjacent column add). When a multiple
of a column is added to an adjacent column, the determinant is unchanged.

Proof. Linearity of the determinant in the i-th column and vanishing
when adjacent columns are equal [10.0.6] yields

det([d@, d --- @ @iy +cd; Gy Aigs -+ dn))
= det([ﬁ u2 Eii Eii+1 ﬁi+2 ﬁi+3 e d ]) +cdet([a1 ﬁz . Zil Eil ﬁz+2 a3 un])
=det([d@; dp -+ d; dip iyr iz - Gn))-

Thus, multiplying the i-th column by the scalar ¢ and adding it to the
(i 4 1)-st column does not change the determinant. O
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-5 0 -6 3

-6 5 7 -1

10.1.2 Problem. Compute det 4 -3 _7 92
9 -6 4 -5

Solution. After multiplying the fourth column by 2 and adding it to
the third column, Lemma 10.1.1 gives

5 0 -6 3 5 0 0 3
6 5 7 —1|| amere 6 5 5 -1||
detf\ 4 3 _7 > ———det) | 4 3 3 L||=0
9 6 4 —5 9 —6 —6 —5

because the determinant vanishing whenever two adjacent columns
are equal [10.0.6]. O

10.1.3 Lemma (Negation under adjacent column swap). When two
adjacent columns are interchanged, the determinant is multiplied by —1.

Proof. Using Lemma 10.1.1 three times and linearity in the (i 4+ 1)-st
column [10.0.6], we have

o det([dy dp --- d;_q1 @; diy iyp diys - dn))

S det([@y @ oo di dijy —d; Ao digs oo dn))

@det([ﬁl dy - iy di+ (g1 — d;) dipy — d; Gigp diys o dn))

=det([d; d, --- dj i1 Aip1 — @ iy diys - fn))

Ci1 H:EH—I?E’. det([ﬁl Eiz ﬁi,1 ﬁi+1 *Eii ;ii+2 Zii+3 ﬁn])
=(—1)det([@, d - dj_1 dip1 @ Gipo digs - dn)) -

Thus, interchanging the i-th and (i 4 1)-st columns changes the sign of
the determinant. O

10.1.4 Proposition (Negation under a column swap). When any two
columns are interchanged, the determinant is multiplied by —1.

Proof. Interchanging any two columns can be accomplished by
interchanging an odd number of adjacent columns. To be more
explicitly, we have

det([dy dy --- @iy @&  dip1 - Bipjoo Biyj1 Aiyj i1 - dn))
& —&n
Cii1+—C: . N . . . . . . o
B (1) det([d d -~ di—y dipq @ - diyjo Bipj1 dipj djgq - Gn))
= (=1)det([d, dp --- dj_1 dip1 diyp - Giajor Ay A dig1 - dn))
Civj—1 Citj2
Ciyi o> Cji_ .
e G VARE U (LA RN AURy ANy TSRy IR AVIRNY R R )
=(-1)¥ 'det([d @ -+ di_1 diyj dig1 o0 Bivjo diyjo1 B Ay oo Gn))
(=1)det([d, @ --- @iy @ipj Aip1 - Biyjp Bisj1 &  Bjyq - dn))-

107
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Hence, interchanging the i-th and (i + j)-th columns changes the sign
of the determinant. O

10.1.5 Corollary (Vanishing under column repetition). When two
columns of a matrix are equal, its determinant is 0.

Proof. Interchanging columns yields a matrix with two adjacent
columns being equal, so the determinant vanishes [10.0.6]. O

10.1.6 Proposition (Invariance under column add). When a multiple of a
column is added to another column, the determinant is unchanged.

Proof. An elementary column addition operation can be performed
by a column swap, an adjacent column addition, and then reversing
the column swaps. More explicitly, to multiply d; by the scalar c and
add it to 71’1-+]-, we do the following;:

) . det([d; dp --- @1 4 diy1 oo igjo digjo1 iy Aiiji1 - Gn))
¢ = Citj-1
Ciyj—1 € S I . ~ ~ _ S -
— (—1)det([ﬂ1 az - Ai—1 Ai4j-1 Aiy1 -0 Aitj-2 4 aitj Aitj+1 " ﬂn])
Ciy1 > €1+ o o . . - . R . . .
————— (=1)det([d, dp --- di_1 Airjr1 Bipq - Biyjo dipj+cd; diyjyr - dn))
G Gy
Civj—1 G 2 S R _ ~ _ _ - .
- (=1)*det([@, @ --- @1 @ Ajy1 - Aipj—2 Aipj—1 Aipj+Cadj Aiyjpy - dn))
= det([dy dp --- dj_q1 @; Ajy1 0 Aipj Aipj—1 Aipj+Cadj Biyjpq - dn)) .

Therefore, adding ¢ times the i-th column to the (i + j)-th column does
not change the determinant. O

Exploiting this property is frequently the most efficient way to
evaluate a determinant.

1 -4 2
10.1.7 Problem. Compute detHZ 9 9” .

-1 7 0
Solution. We have . ]
1 —4 2]y @ratia 10 0 1
detH—Z 9 —9“ %det“—z 1 —5” detl] iy =1
-1 7 0 - -13 2 )
I 10 0 - i
m>oletH—2 1 o” —17. O i ‘
- -1 3 17 0..-1
det N =-1
10.1.8 Corollary. The determinants of the elementary matrices are 1.--0
i 1
det(I+cEjx) =1, P -
det(I -+ Ej,k + Ek,j — E],] — Ek,k) =-1, B 1
d d =d.
det(I + (d— 1)E]//) =d. o 1
1

Moreover, the determinant of an elementary matrix R is invariant under -
taking the transpose: det(R) = det(RT)
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Proof. Invariance under elementary column addition establishes the
first, sign change under columns swaps establishes the second, and
linearity of the i-th column establishes the third. O

10.1.9 Corollary. For any elementary matrix R and any square matrix A,
we have det(AR) = det(A) det(R).

Proof. Left multiplication by an elementary matrix is equivalent to
the corresponding elementary column operation, so the proposition
follows from the properties of determinants and Corollary 10.1.8. O

Exercises

10.1.10 Problem. Determine which of the following statements are
true. If a statement is false, then provide a counterexample.
i. The determinant of a nonzero matrix is never zero.
ii. The determinant of a matrix is zero only if the matrix contains a
column of zeros.
iii. Performing elementary column operations does not change the
determinant.
iv. The determinant of a product of matrices equals the product of
determinants if the matrix on the right is elementary.

10.1.11 Problem. Find the determinant of the matrix

1 20 -1 2
2 11 0 7
0 30 0 -2
-1 -101 1 1
0 90 0 1

10.2 Characterization of Determinants

How DO WE CHARACTERIZE THE DETERMINANT? As outlined in our
overall strategy [10.0.0], we can now use the key properties [10.0.6] to
characterize the determinant function. First, we record a convenient
factorization for a non-invertible matrix.

10.2.0 Lemma. For any non-invertible matrix A, there exists a matrix B
whose last column is zero and elementary matrices Ry, Ry, ..., Ry such that
A=BRR; --- Ry.

Proof. Let BT be the reduced row echelon form of the matrix AT. By
the row reduction algorithm [4.2.0], there exists elementary matrices
Ry, Ry, ..., Ry such that BT = RyRy_; - -- Ry AT. The properties of
the transpose [5.2.7] establish that A = B (R})~' (R]_;)~' -+ (R])~L
Since the transpose and inverse of an elementary matrix is again an

109
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elementary matrix [8.0.2], set R; := (ﬁ}_ ].)’1 foralll < j< {to
obtain A = BR R; - - - Ry. Since the matrix A is not invertible, the
characterizations of invertible matrices [8.0.3] imply that AT is not
invertible. It follows that the bottom row of B' does not contain a
leading one and the last column of B is zero. O

10.2.1 Theorem (Characterization of determinants). The determinant is
the only function satisfying the key properties [10.0.6]. Moreover, a square
matrix is invertible if and only if its determinant is nonzero.

Proof. Let A be a square matrix. To prove the first part, we show
that one can compute det(A) using only the key properties of the
determinant and their consequences. We consider two cases.

e Suppose that A is invertible. It follows from our characterization
of invertible matrices that the matrix A is a product of elementary
matrices: A = R; R --- R;. Using the compatibility of determi-
nants with multiplication by elementary matrices [10.1.9] yields

det(A) = det(R1 Ry --- R()
=det(R1 Ry - -+ Ry_q) det(Ry)

— det(Ry) det(Ry) - - - det(R,) .

Since the key properties determine the determinants of elementary
matrices [10.1.8] and they are nonzero, we are able to compute
det(A) in this case and it is nonzero.

e Suppose that A is not invertible. Lemma 10.2.0 produces the factor-
ization A = BR{ R; - - - Ry and the compatibility of determinants
with multiplication by elementary matrices [10.1.9] gives

det(A) = det(BR; - - - Ry)
= det(B Ry --- Ry q) det(Rg)

— det(B) det(Ry) - - - det(R,) .

Since the matrix B has a column of zeros, a consequence of the key
properties [10.1.0] establishes that det(B) = 0. Therefore, we are
able to compute det(A) in this case and it equals 0. 0O

Exploiting this technique of proof, we also obtain to two important
properties of determinants.

10.2.2 Theorem. Let n be a nonnegative integer. For any (n X n)-matrices
A and B, we have

(compatibility with transpose) det(AT) = det(A)
(compatibility with multiplication) det(B A) = det(B) det(A)

COPYRIGHT © 2021 BY GREGORY G. SMITH
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Proof. We consider two cases.

e Suppose that A is invertible. The characterization of invertible
matrices [8.0.3] shows that A is a product of elementary matrices:
A = Ry R; --- Ry. Combining the compatibility of determinants
with multiplication by elementary matrices [10.1.9], the determi-
nants of elementary matrices [10.1.8], and the commutativity of the
multiplication of scalars gives

det(A) = det(R; R/)
= det(R; )det( 2) - - -det(Ry)
= det(R]) det(R ) -det(R})
= det(R]) det( 1) -+ - det(R])
= det(RJR]_,; R{)

=det((R;Ry -~ Ry)T) = det(AT).

Similarly, the compatibility of determinants with multiplication by
elementary matrices [10.1.9] gives

det(BA) = det(BR{ Ry --- Ry)
= det(B RiR; - - Ry_p)det(Ry)

— det(B) det(Ry) det(Ry) - - - det(R,)
= det(B) det(R; Ry) det(R3) - - - det(Ry)

— det(B) det(Ry R, - - - R,)
= det(B) det(A).

e Suppose that A is not invertible. Having a nonzero determi-
nants characterizes an invertible matrix, so det(A) = 0 and
det(B) det(A) = 0. Since the characterizations of invertible
matrices [8.0.3] imply that AT is not invertible, we also have
det(AT) = 0. Furthermore, Lemma 10.2.0 gives a factorization
A = B'R{R; - -+ R, where the last column of the matrix B’ is
zero and Ry, Ry, ..., Ry are elementary matrices. It follows that the
last column of the matrix product BB’ is zero, so det(BB’) = 0.
Hence, the compatibility of determinants with multiplication by
elementary matrices [10.1.9] yields

0 = det(BB’) = det(BB') det(R;) det(Ry) - - - det(R,)
=det(BB'RiR; --- R) = det(BA). O

10.2.3 Corollary. The key properties of the determinant and all of their
consequences hold when the word “column” is replaced by the word “row”.

Proof. The map A — AT interchanges rows and columns, so the
claim follows the invariance of determinants under transposition. [

111



112 LINEAR ALGEBRA COPYRIGHT © 2021 BY GREGORY G. SMITH

1256 2151
3177 _ _ 1370
10.2.4 Problem. Show that det 0o023ll= det 0021
4215 2414

Solution. Interchanging the first two columns and subtracting the
third from the the fourth converts the left matrix into the right.
Hence, the determinant is multiplied by —1. O

10.2.5 Problem. For any positive integer n, compute

3111 1
1411 1

N L E T
Dui=det] 119116 ... 1

1111 -n+1

Solution. Subtract the first row from every other row and add %
times the k-th column to the first for all 2 < k < n — 1 to obtain
3111 1 3+3+3+ 421111
—-2300---0 300 - 0
o -2040--- 0] _ 0 040 - 0
Du=det/| 5005 ... of | = det 0 005--- 0
2000 - n 0 000 - n
Thus, we deduce that Dn:n!(l—i—%—b—%—i—---—i—%). O
Exercises

10.2.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. The determinant of any product matrices equals the product of
the determinants.
ii. The determinant of a matrix and its transpose are equal.

10.2.7 Problem. Determine all values of 8 for which the matrix

sin(f) 3 —cos(f)
0 2 0
cos(f) —3 sin(h)
is invertible.

10.2.8 Problem.

Let n be a positive integer. Let A, B, C, and D be (n x n)-matrices
with A invertible.

i. Show that det[{lg g]] — det(A) det(D). o [§ 5] = |8 8] [3 45
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~.
~

. Find matrices X and Y which produce the block L U factoriza-

B o= X159

i1i. Show that det [ {B D

]] — det(A) det(D — BA~1 C),

iv. If AB = B A then prove that det[ [‘g g]] =det(AD—-BC).

v. If AB # BA, then give an example such that
A C
det[[B D“ # det(AD—-BC).

10.2.9 Problem.
i. Find the determinants of the following matrices:

32 320
13 32
013

ii. For any positive integer 1, use the results in part i to guess the

SO, W
O, WN
—WNO
WNOO

determinant of the (n x n)-matrix below. Confirm your guess by
using properties of determinants and induction.

320 00
132 00
K= |30 70000
000---32
000---13
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