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The modern, more versatile, and abstract treatment of linear algebra
encompasses much more than the coordinate spaces Kn and their
linear subspaces. This chapter introduces these fundamental ideas
and the most important examples.

1.0 Vector Spaces
What are the underlying objects in linear algebra? Fix a
field K of scalars such as Q, R, or C. Linear algebra is the study of
the following structures.

The axiomatic definition of a vector
space was first given by Giuseppe
Peano in 1888.

1.0.0 Definition (Vector space). A K-vector space V is a set equipped
with two operations

(addition) V ⇥ V ! V written (v, w) 7! v + w

(scalar multiplication) K ⇥ V ! V written (c, w) 7! c v

that satisfy the following eight axioms.

(commutativity) v + w = w + v for all v, w 2 V.
(associativity) (u + v) + w = u + (v + w) for all u, v, w 2 V.

(bc) v = b(c v) for all v 2 V and all b, c 2 K.
(additive identity) There exists 0 2 V such that v + 0 = v for all v 2 V.
(additive inverse) For all v 2 V, there exists w 2 V such that v + w = 0.
(multiplicative identity) 1 v = v for all v 2 V.
(distributivity) c (v + w) = c v + c w for all v, w 2 V and all c 2 K.

(b + c) v = b v + c v for all v 2 V and all b, c 2 K.
The elements of V are called vectors.

1.0.1 Remark. The field K of scalars, equipped with its usual addition
and multiplication, is itself a K-vector space: the set K of scalars
has addition and multiplication operations that are commutative,
associative, distributive, and include identities and inverses.

1.0.2 Remark. The additive identity axiom establishes that the empty
set ? cannot be a vector space.

1.0.3 Problem. Prove that the set Z of integers, equipped with the
addition and multiplication inherited from Q, is not a Q-vector space.

Solution. Since 1
3 (2) = 2

3 is not an integer, multiplication does not
define an operation from Q ⇥ Z to Z.
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1.0.4 Proposition (Properties of vector spaces). Any K-vector space V
has the following properties.

i. The vector space V has a unique additive identity.
ii. Each vector v in V has a unique additive inverse denoted by �v.

iii. For all vectors v in V, we have 0 v = 0.
iv. For all scalars c in K, we have c 0 = 0.
v. For all vectors v in V, we have (�1) v = �v.

Proof.
i. Given additive identities 0 and 00 in V, the additive identity and

commutativity axioms show that 00 = 00 + 0 = 0 + 00 = 0.
ii. Given additive inverses w and w

0 of a vector v in V, the additive
identity, additive inverse, and associativity axioms establish that
w = w + 0 = w + (v + w

0) = (w + v) + w
0 = 0 + w

0 = w
0.

iii. For any vector v in V, the additive identity axiom in K and the
distributivity axiom in V give 0 v = (0 + 0) v = 0 v + 0 v. Let
w denote the additive inverse of the vector 0 v. The additive
identity, associativity, and additive inverse axioms in V give
0 = 0 v + w = (0 v + 0 v) + w = 0 v + (0 v + w) = 0 v + 0 = 0 v.

iv. For any scalar c in K, the additive identity and distributivity
axioms in V give c 0 = c (0 + 0) = c 0 + c 0. Let w be the additive
inverse of the vector c 0. The additive identity, associativity, and
additive inverse axioms in the vector space V give

0 = c 0 + w = (c 0 + c 0) + w = c 0 + (c 0 + w) = c 0 + 0 = c 0 .

v. For any vector v in V, the multiplicative identity and distributiv-
ity axioms in the vector space V together with property iii give
v + (�1) v = 1 v + (�1) v =

�
1 + (�1)

�
v = 0 v = 0 which means

(�1) v is the additive inverse of v.

1.0.5 Problem (Polynomial spaces). Demonstrate that the set K[t] of
all polynomials in the variable t with coefficients in K, equipped with
the usual arithmetic operations, forms a K-vector space.

Proof. A polynomial is an expression p := a0 + a1 t + · · ·+ an tn where
n is a nonnegative integer and a0, a1, . . . , an are scalars in K. For any
q := b0 + b1 t + · · ·+ bn tn in K[t] and any scalar c in K, addition and
scalar multiplication are defined by

p + q := (a0 + b0) + (a1 + b1) t + · · ·+ (an + bn) tn

c p := (ca0) + (ca1) t + · · ·+ (can) tn .

These operations are defined coefficientwise, so the commutativity,
associativity, identities, additive inverse, and distributivity properties
are inherited from the corresponding properties in the field K.

By identifying p in K[t] with its
sequence a0, a1, a2, . . . of coefficients, we
see that polynomials correspond to
sequences of scalars K with only a
finite number of nonzero terms.
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Exercises

1.0.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The rational numbers Q form a Q-vector space.
ii. Every vector space contains at least two vectors.

iii. A vector space is closed under taking linear combinations.

1.0.7 Problem. Determine if the set T := R [ {•}, with addition
and scalar multiplication defined for all v, w 2 T and all c 2 R by
v � w := min(v, w) and c ⌦ v := c + v, is a real vector space. If it is not,
then list all of the defining axioms that fail to hold.

1.0.8 Problem. Determine if the set P := {x 2 R | x > 0}, with
addition and scalar multiplication defined for all v, w 2 P and all
c 2 R by v � w := v w and c ⇥ v := vc, is a real vector space. If it is not,
then list all of the defining axioms that fail to hold.

1.1 Function Spaces
What is the universal example of a vector space? The set of
all functions from an arbitrary set to a vector space has a canonical
vector space structure.

In mathematics, the word “canonical”
means either ‘conventionally agreed to
be the most useful’ or sometimes ‘the
most elegant option known’.

1.1.0 Theorem (Function spaces). Let X be a set and let V be a K-vector
space. The set VX of all functions from X to V is a K-vector space under
pointwise addition and scalar multiplication.

Proof. Consider three functions f , g, h in VX and two scalars b, c in K.
The linear combination b f + c g is the function from X to V defined,
for all x 2 X, by (b f + c g)(x) := b f (x) + c g(x). Let 0 2 VX denote
the zero function that sends each element in X to the additive identity
in vector space V. From the defining axioms of the vector space V,
the pointwise operations on the set VX satisfy the following:

( f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x)
�
( f + g) + h

�
(x) =

�
f (x) + g(x)

�
+ h(x) = f (x) +

�
g(x) + h(x)

�
=

�
f + (g + h)

�
(x)

�
(bc) f

�
(x) = (bc)

�
f (x)

�
= (b)

�
c
�

f (x)
��

=
�
b(c f )

�
(x)

( f + 0)(x) = f (x) + 0(x) = f (x) + 0 = f (x)
�

f + (�1) f
�
(x) = f (x) + (�1)

�
f (x)

�
= f (x)� f (x) = 0 = 0(x)

�
(1) f

�
(x) = 1

�
f (x)

�
= f (x)

�
c( f + g)

�
(x) = c

�
f (x) + g(x)

�
= c

�
f (x)

�
+ c

�
g(x)

�
= (c f + cg)(x)

�
(b + c) f

�
(x) = (b + c)

�
f (x)

�
= b

�
f (x)

�
+ c

�
f (x)

�
= (b f + c f )(x) .

Therefore, the set VX is also a K-vector space.
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1.1.1 Corollary (Coordinate spaces). For all nonnegative integers n, the
set Kn, equipped with entrywise operations, is a K-vector space.

Proof. The field K of scalars is a K-vector space; see Remark 1.0.1.
For the finite set [n] := {1, 2, . . . , n}, Theorem 1.1.0 shows that K[n] is
K-vector space. Since functions from [n] to K are determined by their
outputs, we may identify K[n] with Kn. More explicitly, the function
f in K[n] corresponds to the vector

⇥
f (1) f (2) · · · f (n)

⇤
T 2 Kn and

pointwise operations on K[n] correspond to entrywise operations on
Kn. We conclude that Kn also a K-vector space.

1.1.2 Corollary (Space of matrices). The set Km⇥n of all (m ⇥ n)-matrices,
with the entrywise addition and scalar multiplication, is a K-vector space.

The space of matrices has features, such
as matrix multiplication, that are not
captured by its vector space structure.
This is typical. The power of our
abstract approach is that consequences
derived from only the axioms can be
applied to a wide range of examples.

Proof. Corollary 1.1.1 establishes that Kmn is a K-vector space. By
vertically concatenating the columns of an (m ⇥ n)-matrix to obtain a
(mn ⇥ 1)-matrix, we may identify Km⇥n with Kmn. Under this iden-
tification, entrywise operations on Km⇥n correspond to entrywise
operations on Kmn. We conclude that Km⇥n is a K-vector space.

In practice, almost all vector spaces are obtained as subsets of an
appropriate function space.

1.1.3 Definition (Linear subspace). A subset W of a K-vector space V
is a linear subspace if W forms a K-vector space when equipped with
the addition and scalar multiplication operations inherited from V.

A K-vector space V itself is obviously
the largest linear subspace it contains.

To be more explicit, we rephrase this definition.

1.1.4 Lemma (Naive test). Let V be a K-vector space. A subset W of V is a
linear subspace if and only if the following three properties hold.

(additive identity) The additive identity 0 2 V lies in W.
(closed under addition) For all v, w 2 W, we have v + w 2 W.
(closed under scalar multiplication) For any c 2 K and any v 2 W, we have c v 2 W.

Proof.
): Suppose that W is a linear subspace of V. The addition and

scalar multiplication operations on W are obtain by restricting the
operations on V. Saying that these restrictions yield well-defined
operations on W is equivalent to saying that W is closed under
addition and scalar multiplication. Since the empty set is never a
vector space [1.0.2], there exists a vector w in W. Since W is closed
under scalar multiplication, the properties of a vector space [1.0.4]
yield 0 w = 0 2 W.

(: Suppose that W satisfies the three properties. Since W is closed
under addition and scalar multiplication, the restrictions of the
addition and scalar multiplication operations on V yield well-
defined operations on W. By assumption, the additive identity
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of V belongs to W. As the K-vector space V satisfies the eight
defining axioms [1.0.0] and the operations on W agree with the
operations on V, it follows that these properties also hold in W.
We conclude that W is a K-vector space.

Every vector space has at least one linear subspace.

1.1.5 Problem (Zero subspace). For any K-vector space V, show that
the subset {0} ✓ V, consisting of just the additive identity in V, is a
linear subspace. Moreover, prove that every linear subspace contains
this zero subspace.

Proof. The additive identity axiom in V shows that the singleton {0}
is closed under addition. Since c 0 = 0 for all scalars c in K [1.0.4], the
subset {0} is also closed under scalar multiplication. Thus, the naive
test [1.1.4] proves that {0} is a linear subspace. Finally, the additive
identity axiom implies that every linear subspace of V contains 0 2 V,
so every linear subspace contains the zero subspace.

Exercises

1.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The set RN of a real sequences is a R-vector space.
ii. The set RR of a real-valued functions on the real line is a R-

vector space.
iii. The set ZN of a integer sequences is a Q-vector space.
iv. The set Q[t] of rational polynomials is a linear subspace of QC.

1.1.7 Problem. Give an example of a nonempty subset U in R2 such
that U is closed under scalar multiplication, but U is not a linear
subspace of R2.

1.2 Linear Subspaces
Which subsets inherit the structure of a vector space? We
develop better tools for recognizing such vector spaces.

1.2.0 Proposition (Subspace test). A nonempty subset W of a K-vector
space is a linear subspace if and only if, for all vectors v, w in W and all
scalars b, c in K, the linear combination c v + d w belongs to W.

Proof.
): Suppose that W is a linear subspace of a K-vector space. The

naive test [1.1.4] shows that the subset W is closed under scalar
multiplication, so b v and c w belong to W. Since W is also closed
under addition, we see that b v + c w belongs to W.
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(: Suppose that the subset W is nonempty and closed under linear
combinations. There exists a vector v 2 W. Setting w := v, b := 1,
and c := �1, we obtain b v + c w = v � v = 0 2 W. For all v, w 2 W
and b = c = 1, it follows that b v + c w = v + w 2 W, so W is closed
under addition. Finally, if v 2 W, w := 0, b 2 K, and c := 1, we
have b v + c w = b v 2 W, so W is closed under scalar multiplication.
The naive test [1.1.4] implies that W is a linear subspace of V.

1.2.1 Problem. Verify that the subset S of all functions satisfying the
differential equation f 00 + f = 0 is a linear subspace of the function
space RR.

Solution. The zero function in RR has derivatives of all orders and
trivially satisfies the differential equation f 00 + f = 0, so we see that
S 6= ?. Given functions f , g 2 S and scalars b, c 2 R, we have

(b f + c g)00 + (b f + c g) = b f 00 + c g00 + b f + c g
= b ( f 00 + f ) + c (g00 + g) = c 0 + d 0 = 0

which establishes that b f + c g lies in S. Thus, the subspace test [1.2.0]
implies that S is a linear subspace of RR.

1.2.2 Problem. Prove that the subset of non-differentiable functions is
not a linear subspace of RR.

Solution. The zero function in RR is differentiable. Since the additive
identity does not belong to this subset, it is not a linear subspace.

Calculus demonstrates that continuous
functions, differentiable functions, and
integrable functions each form a linear
subspace of RR .

1.2.3 Problem. Show that the set W := { f 2 Q[t] | f (2) = 0} is a linear
subspace of Q[t].

Solution. Since the zero polynomial belongs to W, we have W 6= ?.
For any polynomials f , g in W and any scalars b, c in Q, it follows
that (b f + c g)(2) = b f (2) + c g(2) = b 0 + c 0 = 0, so b f + c g 2 W.
Thus, the subspace test [1.2.0] implies that W is a linear subspace.

1.2.4 Problem. Let n be a positive integer. Show that the subset of
symmetric matrices is a linear subspace of Kn⇥n.

Solution. Since the identity matrix In equals its transpose, the subset
of symmetric matrices is nonempty. For any symmetric matrices A, B
in Kn⇥n and any scalars b, c in K, the properties of the transpose
imply that (b A + c B)T = b AT + c BT = b A + c B, so b A + c B is also
symmetric. Hence, the subspace test [1.2.0] shows that the subset of
symmetric matrices is a linear subspace.

1.2.5 Problem. Let n be a positive integer. Demonstrate that the subset
sl(n, K), consisting of all matrices with trace equal to zero, is a linear
subspace of Kn⇥n.
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Solution. Since the zero matrix has trace equal to zero, we deduce
that sl(n, K) 6= ?. For any matrices A, B in sl(n, K) and any scalars
b, c in K, the linearity of the trace operation gives

tr(b A + c B) = b tr(A) + c tr(B) = b 0 + c 0 = 0 ,

so b A + c B 2 sl(n, K). Therefore, the subspace test [1.2.0] establishes
that sl(n, K) is a linear subspace of Kn⇥n.

1.2.6 Problem. Let n be a positive integer. Prove that the set GL(n, K),
consisting of the invertible (n ⇥ n)-matrices, is not a linear subspace.

Solution. The zero matrix is not invertible. Since the additive identity
in Kn⇥n is not in GL(n, K), the subset of invertible matrices is not a
linear subspace.

1.2.7 Problem. Let n be an integer greater than 1. Confirm that the set
of non-invertible (n ⇥ n)-matrices is not a linear subspace of Kn⇥n.

Solution. None of the matrix units E1,1, E2,2, . . . , En,n is invertible
because all but one row or column is zero. However, their sum

E1,1 + E2,2 + · · ·+ En,n = In

is invertible. Since the set of non-invertible matrices is not closed
under addition, this subset is not a linear subspace.

The matrix unit Ej,k is a matrix having
1 in the (j, k)-entry as its only nonzero
entry.

1.2.8 Problem. Prove that the subset c00 of all infinite sequences with
only a finite number of nonzero terms is a linear subspace of KN.

Calculus proves that the convergent
sequences also form a linear subspace
of RN .

Proof. Since the zero sequence lies in c00, we have c00 6= ?. For all
sequences (vj)

•
j=0, (wj)

•
j=0 in c00 and all scalars b, c in K, the term

c vj + d wj = 0 when vj = 0 and wj = 0. Since both (vj)
•
j=0 and

(wj)
•
j=0 have only a finite number of nonzero terms, it follows that

b(vj)
•
j=0 + c(wj)

•
j=0 = (b vj + c wj)

•
j=0 also has only a finite number of

nonzero terms. In other words, the linear combination (c vj + d wj)
•
j=0

lies in c00, so the subspace test [1.2.0] confirms that c00 is a linear
subspace of RN.

Exercises

1.2.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The empty set is closed under taking linear combinations.
ii. The set of skew-symmetric matrices form a linear subspace.

1.2.10 Problem. Let V be a K-vector space. Prove that the intersection
of any collection of linear subspaces in V is also a linear subspace.


