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Certain collections of vectors have special properties. This chapter
develops two of these notions: linear independence and spanning.
Collections with both properties are exceptionally useful.

2.0 Spanning and Linear Independence
What features distinguish collections of vectors? Based on
our study of vectors in Kn, we already recognize the following two
definitions as crucial in the development of linear algebra.

2.0.0 Definition. Let V be a K-vector space and let n be a nonnegative
integer. The span of the vectors v1, v2, . . . , vn in V is the set of all their
linear combinations:

Span(v1, v2, . . . , vn) := {c1 v2 + c2 v2 + · · ·+ cn vn 2 V | c1, c2, . . . , cn 2 K} .

Since the empty sum of vectors equals
the additive identity, the zero subspace
is Span(?) = {0}.

2.0.1 Remark. The subspace test [1.2.0] shows that Span(v1, v2, . . . , vn)

is the smallest linear subspace containing the vectors v1, v2, . . . , vn.

2.0.2 Problem. Determine if the polynomial �t3 + 2t2 + 3t + 3 in Q[t]
lies in the linear subspace Span(t3 + t2 + t + 1, t2 + t + 1, t + 1) ⇢ Q[t].

Solution. From the equation

�t3 + 2t2 + 3t+ 3 = (�1)(t3 + t2 + t+ 1) + (3)(t2 + t+ 1) + (1)(t+ 1) ,

we deduce that the polynomial �t3 + 2t2 + 3t + 3 lies in the linear
subspace Span(t3 + t2 + t + 1, t2 + t + 1, t + 1).

2.0.3 Definition. A finite set {v1, v2, . . . , vn} of vectors is linearly

independent if the equation c1 v1 + c2 v2 + · · · + cn vn = 0, where
c1, c2, . . . , cn are scalars, implies that c1 = c2 = · · · = cn = 0.
Conversely, a set of vectors is linearly dependent if one vector can be
expressed as a linear combination of the other vectors.

When there is a nonzero scalar ck, for
some 1 6 k 6 n, rearranging the linear
relation confirms that the vector vk is a
linear combination of the other vectors.

2.0.4 Problem. Verify that the functions sin2(x), cos2(x), cos(2x) are
linearly dependent in the R-vector space RR.

Solution. The trigonometric identity cos(2x) = cos2(x) � sin2(x)
demonstrates that these functions are linearly dependent in RR.
Equivalently, a nonzero linear combination of these functions equals
zero: (1) sin2(x) + (�1) cos2(x) + (1) cos(2x) = 0.
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2.0.5 Proposition (Monomial independence). Let n be a nonnegative
integer. For any subset X ✓ K containing more than n distinct scalars, the
monomial functions fk(t) := tk, for all 0 6 k 6 n, are linearly independent
in the K-vector space KX.

Proof. Suppose that the scalars c0, c1, . . . , cn in K satisfy

c0 f0(t) + c1 f1(t) + · · ·+ cn fn(t) = c0 1 + c1 t + · · ·+ cn tn = 0 .

Evaluating at n + 1 distinct points x0, x1, . . . , xn 2 X gives
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Since the coefficient matrix is the transpose of the Vandermonde
matrix and scalars x0, x1, . . . , xn are distinct, the determinant of
the coefficient matrix is nonzero. Hence, the coefficient matrix is
invertible. It follows that c0 = c1 = · · · = cn = 0 is the unique
solution to this homogeneous linear system, which shows that the
functions f0(t), f1(t), . . . , fn(t) are linearly independent.

2.0.6 Problem. Determine whether the three polynomials

t3 + 2t2 , � t2 + 3t + 1 , t3 � t2 + 2t � 1 ,

are linearly independent in Q[t].

Solution. Suppose that there exists scalars c1, c2, c2 in Q such that

0 = c1(t3 + 2t2) + c2(�t2 + 3t + 1) + c3(t3 � t2 + 2t � 1)

= (c1 + c3)t3 + (2c1 � c2 � c3)t2 + (3c2 + 2c3)t1 + (c2 � c3)t0 .

Since the monomials are linear independent, we obtain
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c1 + c3 = 0
2c1 � c2 � c3 = 0

3c2 + 2c3 = 0
c2 � c3 = 0
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Hence, we conclude that c1 = c2 = c3 = 0 and the polynomials are
linear independent.

Certain periodic functions provide another example of linearly
independent functions arising in approximation theory and the study
of Fourier series.
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2.0.7 Proposition. For any nonnegative integer n, the functions

1, cos(z), sin(z), cos(2z), sin(2z), . . . , cos(nz), sin(nz)

are linearly independent in the C-vector space CC.

Proof. Suppose that there are scalars c�n, . . . , c�1, c0, c1, . . . , cn such
that c0 1 + Ân

k=1 c�k cos(kz) + Ân
k=1 ck sin(kz) = 0. By definition, we

have cos(kz) := 1
2 (e

i k z + e�i k z) and sin(kz) := 1
2i (e

i k z � e�i k z), so

c0 ei 0 +
n

Â
k=1

1
2 (c�k + i ck) e�i k z +

n

Â
k=1

1
2 (c�k � i ck) ei k z = 0 .

For all 1 6 k 6 n, set d�k := 1
2 (c�k+i ck), dk := 1

2 (c�k�i ck), and
d0 := c0 to obtain the equation

d�n e�i n z + d�n+1 e�i (n�1) z + · · ·+ dn einz = 0 .

Let w := ei z. It follows that wk = ei k z and

d�n w�n + d�n+1 w�n+1 + · · ·+ dn wn = 0 .

Multiplying by wn gives d�n + d�n+1 w + · · · + dn w2n = 0. Since
w 6= 0 and the monomial functions w 7! wj, for all 0 6 j 6 2n, are
linearly independent [2.0.6], we have d�n = d�n+1 = · · · = dn = 0.
From the equations c�k = d�k + dk, c0 = d0, and ck = i (dk � d�k) for
all 1 6 k 6 n, we see that c�n = c�n+1 = · · · = cn = 0. Thus, the
set {1, cos(z), sin(z), cos(2z), sin(2z), . . . , cos(nz), sin(nz)} is linearly
independent in the complex vector space CC.

2.0.8 Definition. For any nonnegative integer n, the linear space of

trigonometric polynomials of degree at most n is the linear subspace
of CC with basis 1, cos(z), sin(z), cos(2z), sin(2z), . . . , cos(nz), sin(nz).

Exercises

2.0.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The span of any collection of vectors forms a linear subspace.
ii. The zero function is never apart of a linearly independent collec-

tion of functions.
iii. The functions cos3(q), cos(3q), cos(q) are linearly independent.
iv. Any subset of a linearly independent collection of vectors is also

linearly independent.
v. Any subset of a linearly dependent collection of vectors is also

linearly dependent.
vi. The empty set spans a linear subspace.

vii. The empty set of vectors is linearly independent.
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2.0.10 Problem. Consider functions f1, f2, . . . , fn in Cn�1(R), the
R-vectors space of all real-valued functions on the real line that have
continuous first (n � 1) derivatives. The determinant

W(x) :=

2

666664

f1(x) f2(x) · · · fn(x)
f 01(x) f 02(x) · · · f 0n(x)
f 001 (x) f 002 (x) · · · f 00n (x)

...
...

. . .
...

f (n�1)
1 (x) f (n�1)

2 (x) · · · f (n�1)
n (x)

3

777775

is called the Wronskian. If there exists a point x 2 R such that the
Wronskian is nonzero, then show that the functions f1, f2, . . . , fn are
linearly independent.

2.1 Dimension
How do we measure the size of a vector space? Combining
our two favourite features for a collection of vectors, we obtain the
following fundamental concept.

2.1.0 Definition. A basis of a vector space is a linearly-independent
spanning set of vectors.

2.1.1 Remark. Most popular vector spaces have a canonical basis. For
instance, the coordinate space Kn has the standard basis ~e1,~e2, . . . ,~en,
the matrix space Km⇥n has the matrix units Ej,k for all 1 6 j 6 m and
all 1 6 k 6 n, and the space K[t] has the monomials 1, t, t2, . . . .

We start with a powerful way of exchanging linearly independent
vectors with elements in a spanning set to obtain a new spanning set.

Ernst Steinitz first stated and proved
this lemma in 1913.

2.1.2 Lemma (Exchange). Let V be a K-vector space. Fix nonnegative
integers m and n. Given linearly independent vectors v1, v2, . . . , vm in V
and vectors w1, w2, . . . , wn satisfying Span(w1, w2, . . . , wn) = V, we
have the inequality m 6 n and, after reindexing the vectors wk if necessary,

Span(v1, v2, . . . , vm, wm+1, wm+2, . . . , wn) = V .

Inductive proof. Up to reindexing the vectors w1, w2, . . . , wn, we claim
that Span(v1, v2, . . . , vk, wk+1, wk+2, . . . , wn) = V for all 0 6 k 6 m.
We proceed by induction on k. Since Span(w1, w2, . . . , wn) = V, the
base case k = 0 holds. As the induction hypothesis, assume that the
claim holds for some index k satisfying 0 6 k < m. Since vk+1 lies
in V = Span(v1, v2, . . . , vk, wk+1, wk+2, . . . , wn), there exists scalars
c1, c2, . . . , cn in K such that

vk+1 = c1 v1 + c2 v2 + · · ·+ ck vk + ck+1 wk+1 + ck+2 wk+2 + · · ·+ cn wn .

At least one of the scalars ck+1, ck+2, . . . , cn must be nonzero, other-
wise this equation would contradict the linear independence of the
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vectors v1, v2, . . . , vn. It follows that k < n. By reindexing the vectors
wk+1, wk+2, . . . , wn if necessary, we may assume that ck+1 6= 0, so

wk+1 = 1
ck+1

�
vk+1 � c1 v1 � c2 v2 � · · ·� ck vk � ck+2 wk+2 � ck+3 wk+3 � · · ·� cn wn

�
,

and wk+1 2 Span(v1, v2, . . . , vk+1, wk+2, wk+3, . . . , wn). We see that

Span(v1, v2, . . . , vk+1, wk+2, wk+3, . . . , wn) ◆ Span(v1, v2, . . . , vk, wk+1, wk+2, . . . , wn) = V

completing the induction step. The case k = m is the lemma.

As with linear subspaces in Kn, the number of vectors in a basis
for a K-vector space is a numerical invariant of the vector space.

2.1.3 Theorem (Equicardinality of bases). Any two bases of a vector space
have the same number of vectors.

Proof. Consider a K-vector space V with two bases v1, v2, . . . , vm

and w1, w2, . . . , wn. Since {v1, v2, . . . , vm} is linearly independent
and V = Span(w1, w2, . . . , wn), the exchange lemma [2.1.2] implies
that m 6 n. On the other hand, the set {w1, w2, . . . , wn} is also
linearly independent and V = Span(v1, v2, . . . , vm), so the exchange
lemma [2.1.2] implies that n 6 m. We conclude that m = n and any
two bases of V have the same number of vectors.

2.1.4 Definition. The dimension of a K-vector space V is the number
of vectors in any basis of V. It is denoted by dim(V).

2.1.5 Remark. For all nonnegative integers m and n, the canonical
bases establish that dim(Kn) = n, dim(Km⇥n) = mn, dim(K[t]) = •,
and the linear space of trigonometric polynomials of degree at most n
has dimension 2n + 1.

Any 0-dimensional vector subspace
must have the empty set as a basis.
Thus, a 0-dimensional vector subspace
contains one vector: the additive
identity 0.

Although the vector space of polynomials is infinite-dimensional,
it has some natural finite-dimensional linear subspaces.

2.1.6 Definition. The degree of a nonzero polynomial is the largest
integer j such that coefficient of the monomial tj is nonzero.

2.1.7 Proposition (Polynomials of bounded degree). Let n be a non-
negative integer. The set K[t]6n, consisting of the zero polynomial and all
polynomials of degree at most n, is a linear subspace of K[t]. Moreover, we
have dim(K[t]6n) = n + 1.

Proof. The zero polynomial belongs to the given set, so K[t]6n 6= ?.
Given polynomials f , g 2 K[t]6n and scalars c, d 2 K, it follows
that f = a0 + a1 t + · · · + an tn for some scalars a0, a1, . . . , an 2 K,
g = b0 + b1 t + · · · + bn tn for some scalars b0, b1, . . . , bn 2 K, and
c f + d g = (ca0 + db0) + (ca1 + db1) t + · · · + (can + dbn) tn. Since
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ak = 0 = bk for all k > n, we deduce that cak + dbk = 0 for all
k > n and the linear combination c f + d g lies in K[t]6n. Hence,
the subspace test [1.2.0] proves that K[t]6n is a linear subspace of
K[t]. By definition, the monomials 1, t, t2, . . . , tn span K[t]6n. Since
these monomials are linearly independent [2.0.6], they form a basis of
K[t]6n and dim(K[t]6n) = n + 1.

2.1.8 Problem. Show that 1, t, t(t � 1), (t � 1)2, 1 + t + t2 2 Q[t] are
linearly dependent.

Solution. The exchange lemma [2.1.2] establishes that the number
of vectors in a linearly independent set is less than or equal to the
dimension of the ambient vector space. The 5 given vectors lie in the
3-dimensional vector space Q[t]62, so they are linear dependent.

Exercises

2.1.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The K-vector space K[t]6n has a unique basis.
ii. The functions 1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

are linearly independent in the real vector space RR.
iii. The complex vector space CC of all functions from the complex

numbers to the complex numbers has a finite dimension.
iv. Every linear independent set in Kn is part of a basis for Kn.

2.1.10 Problem. Let a0, a1, . . . , an be n + 1 distinct real numbers. The
Lagrange polynomials are defined by

Lj(t) :=
(t � a0) · · · (t � aj�1)(t � aj+1) · · · (t � an)

(aj � a0) · · · (aj � aj�1)(aj � aj+1) · · · (aj � an)
=

n

’
k=0
k 6=j

t � ak
aj � ak

where 0 6 j 6 n.

i. Compute the Lagrange polynomials associated with the three
real numbers a0 = 1, a1 = 2, and a2 = 3.

ii. Prove that the polynomials L0, L1, . . . , Ln form a basis for R[t]6n.
iii. Deduce the Lagrange interpolation formula which states that, for

all q 2 R[t]6n, we have

q(t) =
n

Â
j=0

q(aj)Lj(t) .

2.1.11 Problem. For any square matrix B with entries in K, prove that
there is a nonzero polynomial p 2 K[t] which has B as a root.

2.2 Recognizing Bases
How does dimension help identify bases in a vector space?
A basis for a linear subspace can typically be obtain from a basis of
its ambient vector space.
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2.2.0 Problem. Let n be a positive integer. Determine the dimension of
the linear subspace of all symmetric matrices in R-vector space Rn⇥n.

Solution. For all 1 6 j 6 n and all 1 6 k 6 n, let aj,k denote the
(j, k)-entry in an (n ⇥ n)-matrix A. The matrix A is symmetric if
AT = A or equivalently aj,k = ak,j. Hence, any symmetric matrix A
can be expressed as

A =

 
n

Â
j=1

aj,j Ej,j

!
+

 
n�1

Â
j=1

n

Â
k=j+1

aj,k (Ej,k + Ek,j)

!
=

2

664

a1,1 a1,2 · · · a1,n
a1,2 a2,2 · · · a2,n

...
...

. . .
...

a1,n a2,n · · · an,n

3

775 ,

which shows that the set

B := {Ej,j | 1 6 j 6 n} [ {Ej,k + Ek,j | 1 6 j < k 6 n}

spans the linear subspace of symmetric matrices. Because no two
matrices in B are nonzero in the same entry, this set is also linearly
independent. Thus, the set B is a basis for the space of symmetric
matrices and its dimension is

n + (n � 1) + (n � 2) + · · ·+ 2 + 1 =
n(n + 1)

2
=

✓
n + 1

2

◆
.

The next result shows that a maximal linearly independent set is a
basis and a minimal spanning set is a basis.

2.2.1 Proposition (Extremal properties of a basis). Let n be a nonnegative
integer and consider the vectors v1, v2, . . . , vn in the K-vector space V.

i. When the vectors v1, v2, . . . , vn are linearly independent, they are
contained in a basis of V and n 6 dim(V). Moreover, we have
n = dim(V) if and only if the vectors v1, v2, . . . , vn form a basis of V.

ii. When Span(v1, v2, . . . , vn) = V, the vectors contain a basis of V
and n > dim(V). Moreover, we have n = dim(V) if and only if the
vectors v1, v2, . . . , vn form a basis for V.

Proof. The inequalities in both part i and part ii follow from the
exchange lemma [2.1.2]. When the vectors v1, v2, . . . , vn form a basis,
the definition of dimension establishes that dim(V) = n. It remains
to show that, in both cases, the equality n = dim(V) implies that the
vectors v1, v2, . . . , vn do form a basis. Assume that n = dim(V).

i. Suppose that Span(v1, v2, . . . , vn) 6= V. There exists a vector w

in V that is not a linear combination of the vectors v1, v2, . . . , vn.
Hence, in any linear relation c1 v1 + c2 v2 + · · ·+ cn vn + d w = 0,
we must have d = 0. Since the vectors v1, v2, . . . , vn are linearly
independent, we also have c1 = c2 = · · · = cn = 0 and the
vectors v1, v2, . . . , vn, w are linearly independent. The exchange
lemma [2.1.2] shows that n = dim(V) > n + 1 which is absurd.
Thus, the vectors v1, v2, . . . , vn do span V and form a basis of V.
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ii. Suppose that the vectors v1, v2, . . . , vn are linear dependent.
There exists a nonzero linear relation c1 v1 + c2 v2 + · · ·+ cn vn = 0.
In particular, there is an index k such that 1 6 k 6 n, ck 6= 0, and

vk = � c1
ck

v1 � c2
ck

v2 � · · · ck�1
ck

vk�1 �
ck+1

ck
vk+1 �

ck+2
ck

vk+2 � · · ·� cn
ck

vn .

It follows that Span(v1, v2, . . . , vk�1, vk+1, vk+2, . . . , vn) = V. Thus,
the exchange lemma [2.1.2] shows that n = dim(V) 6 n � 1
which is absurd. Therefore, the vectors v1, v2, . . . , vn are linearly
independent and do form a basis of V.

Using these extremal properties, we identify a common basis for
the polynomials of bounded degree.

2.2.2 Problem. Let n be a nonnegative integer and fix a scalar a in K.
Prove that that the n + 1 polynomials 1, (t � a), (t � a)2, . . . , (t � a)n

form a basis of K[t]6n.

Solution. The K-vector space K[t]6n has dimension n + 1; see [2.1.7].
Given n + 1 polynomials having degree at most n, it suffices by the ex-
tremal properties of bases [2.2.1] to show that these polynomials are
linearly independent. Suppose that there exists scalars c0, c1, . . . , cn

in K such that c0 1 + c1 (t � a) + c2 (t � a)2 + · · ·+ cn (t � a)n = 0. It
remains to demonstrate that c0 = c1 = · · · = cn = 0.

For all 0 6 k 6 n, we prove that ck = 0 by induction on k.
Evaluating at a, we see that c0 1 + c1 0 + · · ·+ cn 0 = 0 establishing that
the base case c0 = 0. For some index k satisfying 0 6 k < n, assume
that c0 = c1 = · · · = ck = 0. Thus, our linear relation becomes

0 = c0 1 + c1 (t � a) + c2 (t � a)2 + · · ·+ cn (t � a)n

= (t � a)k+1�ck+1 1 + ck+2 (t � a) + · · ·+ cn (t � a)n�k�1� .

and we deduce that ck+1 1 + ck+2 (t � a) + · · ·+ cn (t � a)n�k�1 = 0.
Evaluating at a implies that ck+1 = 0 completing the induction step.
We conclude that the polynomials 1, (t � a), (t � a)2, . . . , (t � a)n form
a basis of the K-vector space K[t]6n.

2.2.3 Problem. Let V := { f 2 C[t]63 | f (1) = 0}. Show that V is a
linear subspace and find its dimension.

Solution. The zero polynomial belongs V, so V 6= ∆. For any f , g 2 V
and any b, c 2 C, we have

(b f + c g)(1) = b f (1) + c g(1) = b(0) + c(0) = 0 ,

so the subspace test [1.2.0] proves that V is a linear subspace of C[t].
Since the set {1, t � 1, (t � 1)2, (t � 1)3} span C[t]63, it follows that
{t � 1, (t � 1)2, (t � 1)3} spans V. As a subset of a basis, this set is
clearly linearly independent, whence dim V = 3.


