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Exercises

2.2.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The zero vector space has no basis.
ii. Every vector space has a finite basis.

iii. Every vector space that is spanned by a finite set of vectors has a
basis.

iv. Every linear subspace of a finite-dimensional vector space is
finite-dimensional.

v. For any nonnegative integer n, there exists a vector space of
dimension n.

2.3 Coordinates
Why are bases important for computations? Choosing a basis
for a K-vector space V allows one to identify V with a coordinate
space Kn and, thereby, exploit our many computation techniques.

2.3.0 Proposition (Basis means unique linear combination). The vectors
v1, v2 . . . , vn form a basis for the K-vector space V if and only if any vector
w in V is a unique linear combination of the vectors v1, v2, . . . , vn.

Proof.
): Suppose that the vectors v1, v2, . . . , vn form a basis for V. Fix a

vector w in V. Since V = Span(v1, v2, . . . , vn), there exists scalars
c1, c2, . . . , cn in K such that w = c1 v1 + c2 v2 + · · ·+ cn vn. If we also
have w = d1 v1 + d2 v2 + · · ·+ dn vn for some scalars d1, d2, . . . , dn

in K, then we obtain

0 = w � w = (c1 � d1) v1 + (c2 � d2) v2 + · · ·+ (cn � dn) vn .

Since the vectors v1, v2, . . . , vn are linearly independent, it follows
that c1 � d1 = c2 � d2 = · · · = cn � dn = 0 and the two linear
combinations are the same.

(: Suppose that each vector w in V is a unique linear combination
of the vectors v1, v2, . . . , vn. Because this holds for every vector in
V, it follows that Span(v1, v2, . . . , vn) = V. The definition of linear
independence is equivalent by saying that the zero vector 0 is a
unique linear combination of the vectors v1, v2, . . . , vn. Thus, the
vectors v1, v2, . . . , vn form a basis for V

By focusing on the coefficients in the unique linear combination of
the basis vectors, we obtain the associated coordinate vector.

2.3.1 Definition. Let B := (v1, v2, . . . , vn) be an ordered basis for the
K-vector space V. For any vector w in V, the coordinate vector of w

relative to the basis B is the unique vector (w)B := [c1 c2 · · · cn]T

in Kn such that w = c1 v1 + c2 v2 + · · ·+ cn vn.

An ordered basis is also called a frame.
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2.3.2 Problem. Consider V := { f 2 R[t]62 |
R 1

0 f (t) dt = 0}. Show that
V is an R-vector space and B := (t � 1/2, t2 � 1/3) is an ordered basis.
Compute the coordinate vector of 3t2 � 2t with relative to B.

Solution. The zero polynomial belongs to V, so we have V 6= ?. For
any polynomials f , g in V and any scalars b, c 2 R, we have
Z 1

0
(b f + c g)(t) dt = b

✓Z 1

0
f (t) dt

◆
+ c

✓Z 1

0
g(t) dt

◆
= b(0) + c(0) = 0 ,

and the linear combination b f + c g also lies in V. Thus, the subspace
test [1.2.0] shows that V is a linear subspace of R[t].

Since any vector f in R[t]62 has the form f := a0 + a1 t + a2 t2 for
some scalars a0, a1, a2 2 R, it follows that

0 =
Z 1

0
f (t) dt =

Z 1

0
a0 + a1 t+ a2 t2 dt =

h
a0 t+ a1

2 t2 + a2
3 t3

i1

0
= a0 +

1
2 a1 +

1
3 a2 .

As a0 = �a1/2 � a2/3, we see that f = a1(t � 1/2) + a2(t2 � 1/3) and
V = Span(t � 1/2, t2 � 1/3). To show that these functions are linearly
independent, consider a linear relation c1(t � 1/2) + c2(t2 � 1/3) = 0.
Evaluating at t = 1/2 and t = 1/

p
3 implies that c1 = c2 = 0. We

conclude that B = (t � 1/2, t2 � 1/3) is an ordered basis for R-vector
space V and dim(V) = 2.

Finally, the equation 3t2 � 2t = �2 (t � 1/2) + 3 (t2 � 1/3) implies
that the coordinate vector is (3t2 � 2t)B = [�2 3]T 2 R2.

2.3.3 Definition. For all nonnegative integers n and k, the binomial
coefficient (n

k) is the number of subsets of the set {1, 2, . . . , n} with k
elements. For instance, the 2-element subsets of {1, 2, 3, 4} are {1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4}, so (4

2) = 6.

Some values are easy to determine.
• For any nonnegative integer n, we

have (n
0) = 1 because the empty set is

the unique set with no elements.
• For any nonnegative integer n,

we have (n
n) = 1 because the set

{1, 2, . . . , n} itself is the unique set
with n elements.

• For any nonnegative integer n, we
have (n

2) = n(n � 1)/2 because
there are n ways to choose the first
element, n � 1 ways to choose a
different second element, and 2 ways
to order them.

2.3.4 Binomial Theorem. For all nonnegative integers n and all scalars a
in K, the coordinate vector of the polynomial (t + a)n in K[t]6n relative to
the monomial basis M := (1, t, . . . , tn) is

((t + a)n)M =

✓
n
0

◆
an

✓
n
1

◆
an�1

✓
n
2

◆
an�2 · · ·

✓
n
n

◆
a0
�T

2 Kn+1 .

In other words, we have (t + a)n =
n

Â
k=0

✓
n
k

◆
an�k tk.

Proof. When we expand (t + a)n = (t + a)(t + a) · · · (t + a) using the
distributive property, every term is a product of n factors and each
factor is either t or a. The number of terms with k factors of t and
n � k factors of a is the coefficient of tkan�k. This is exactly the number
of ways to choose k of the n binomials that will contribute a t, so

(t+ a)n =

✓
n
0

◆
an +

✓
n
1

◆
an�1 t+

✓
n
2

◆
an�2 t2 + · · ·+

✓
n
n

◆
a0 tn =

n

Â
k=0

✓
n
k

◆
an�k tk ,

and ((t + a)n)M =
⇥
(n

0)an (n
1)an�1 (n

2)an�2 · · · (n
n)a0⇤T.
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2.3.5 Problem. Let n be a nonnegative integer and let a be scalar in K.
Show that that the list of polynomials

�
1, (t � a), (t � a)2, . . . , (t � a)n�

is an ordered basis for the K-vector space K[t]6n.

Solution. The n + 1 entries in the given list lie in K[t]6n. Knowing that
dim K[t]6n = n + 1, it suffices to prove that these polynomials span
K[t]6n. For all 0 6 k 6 n, the Binomial Theorem shows that

tk =
�
(t � a) + a

�k
=

k

Â
j=0

✓
k
j

◆
ak�j (t � a)j ,

so the monomial tk lies in Span(1, (t � a), (t � a)2, . . . , (t � a)n�.
Since the canonical basis for K[t]6n is (1, t, t2, . . . , tn), we deduce that
K[t]6n ✓ Span

�
1, (t � a), (t � a)2, (t � a)3, . . . , (t � a)n� ✓ K[t]6n.

Exercises

2.3.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The set RR of a real-valued functions on the real line is a R-
vector space.

ii. The set ZN of a integer sequences is a Q-vector space.
iii. The set Q[t] of rational polynomials is a linear subspace of QC.

2.3.7 Problem. Fix a nonnegative integer n. For each 0 6 k 6 n,
consider the Bernstein polynomial

bk,n(t) :=
✓

n
k

◆
tk(1 � t)n�k 2 Q[t] .

i. Show that b0,n(t), b1,n(t), . . . , bn,n(t) form a basis for Q[t]6n.

ii. Prove that
n

Â
j=0

bj,n(t) = 1.
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Maps between vectors spaces are as crucial as the spaces themselves.
This chapter illustrates the prevalence and the significance of maps
that are compatible with taking linear combinations.

3.0 Homomorphisms
What are the most important maps between vector spaces?
When studying a particular type of mathematical object, the maps
that preserve the underlying structure are especially important.

3.0.0 Definition. Let V and W be two K-vector spaces. A linear map

(also known as a linear transformation or homomorphism) is a map
T : V ! W such that, for all vectors v, w in V and all scalars b, c in K,
we have T[b v + c w] = b T[v] + c T[w]. The set of all linear maps from
V to W is denoted by Hom(V, W).

The word “homomorphism” comes
from ancient Greek: òµóV (homos)
means “same” and µorfh́ (morphe)
means “form” or “shape”.

3.0.1 Problem. Show that left multiplication by a fixed (m ⇥ n)-matrix
defines a linear map from Kn to Km.

Solution. Given an (m ⇥ n)-matrix A, consider the map defined, for
all vectors v in Kn, by v 7! A v. For all vectors v, w in Kn and all
scalars b, c in K, the properties of the matrix multiplication establish
that A(b v + c w) = b(A v) + c(A w).

3.0.2 Problem. Prove that multiplication by a fixed polynomial defines
a homomorphism from K[t] to itself.

Solution. Given a polynomial h in K[t], consider the map defined,
for all f 2 K[t], by f 7! f h. For all polynomials f , g in K[t] and
all scalars b, c in K, the distributivity of multiplication implies that
(b f + c g) h = b( f h) + c(g h).

Calculus shows that differentiation
defines a linear map from the vector
space of all differentiation functions to
the vector space of all functions.
Similarly, integration defines a linear
map from the vector space of all
integrable functions to the vector space
of all functions.

3.0.3 Proposition (Properties of linear maps). Let V and W be two
K-vector spaces.

i. For any linear map T : V ! W, we have T[0V ] = 0W.
ii. The zero map 0 : V ! W, that sends each vector in V to the additive

identity in W, and the identity map idV : V ! V are both linear.
iii. The composition of linear maps is again linear.
iv. A linear combination of linear maps is linear.
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Proof.
i. The definition of a linear map and the additive identity property

in V give T[0V ] = T[0V + 0V ] = T[0V ] + T[0V ]. Using the additive
identity and additive inverse properties in W, we obtain

0W = T[0V ]� T[0V ] = T[0V ] + T[0V ]� T[0V ] = T[0V ] + 0W = T[0V ] .

ii. For all vectors v, w in V and all scalars b, c in K, we have

0[b v + c w] = 0W = b 0W + c 0W = b 0[v] + c 0[w] ,
idV [b v + c w] = b v + c w = b idV [v] + c idV [w] .

iii. Let S : U ! V and T : V ! W be linear maps between K-vector
spaces. For all vectors v, w in U and all scalars b, c in K, we have

(T � S)[b v + c w] = T
⇥
S[b v + c w]

⇤

= T
⇥
b S[v] + c S[w]

⇤

= b T
⇥
S[v]

⇤
+ c T

⇥
S[w]

⇤
= b (T � S)[v] + c (T � S)[w] .

iv. Let T : V ! W and T0 : V ! W be linear maps between K-vector
spaces. For all vectors v, w in V and all scalars a, b, c, d in K, we
have

(a T + b T0)[c v + d w] = a T[c v + d w] + b T0[c v + d w]

= ac T[v] + ad T[w] + bc T0[v] + bd T0[v]

= c
�
a T[v] + b T0[v]

�
+ d

�
a T[w] + b T0[w]

�

= c (a T + b T0)[v] + d (a T + b T0)[w] .

3.0.4 Corollary. For all K-vector spaces V and W, the set Hom(V, W) of
linear maps is a linear subspace of the K-vector space VW.

Proof. By combining second and fourth properties of linear maps,
the subspace test [1.2.0] shows that Hom(V, W), equipped with
pointwise operations, is a linear subspace of VW .

3.0.5 Problem. Show that the functions cos(x), sin(x) are not linear.

Solution. Since cos(0) = 1 6= 0, the cosine function cannot be linear.
Since sin

�
p
2 � p

3
�
= sin

�
p
6
�
= 1

2 and sin
�

p
2
�
� sin

�
p
3
�
= 1 �

p
3

2 6= 1
2 ,

the sine function is not linear.

3.0.6 Problem. Let V and W be K-vector spaces. Show evaluation at a
fixed vector v in V defines a linear map from Hom(V, W) to W.

Solution. For all linear maps f , g in Hom(V, W) and all scalars b, c in
K, we have (b f + c g)[v] = b( f [v]) + c(g[v]) because both the addition
and scalar multiplication on Hom(V, W) are defined pointwise.

3.0.7 Proposition (Linear maps via a basis). A linear map is uniquely
determined by its values on a basis and may take arbitrary values on a basis.
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Proof. Consider a linear map T : V ! W and a basis v1, v2, . . . , vn of
the K-vector space V. For all 1 6 k 6 n, set wk := T[vk]. For any
vector u in V, there exists unique scalars c1, c2, . . . , cn in K such that
u = c1 v2 + c2 v2 + · · ·+ cn vn, because v1, v2, . . . , vn is a basis for V.
The linearity of the map T implies that

T[u] = T[c1 v1 + c2 v2 + · · ·+ cn vn]

= c1(T[v1]) + c2(T[v2]) + · · ·+ cn(T[vn])

= c1 w1 + c2 w2 + · · ·+ cn wn ,

so the output T[u] is determined by the vectors w1, w2, . . . , wn.
Given an arbitrary collection of vectors w1, w2, . . . , wn in W, define

the map T0 : V ! W by T0[u] := c1 w1 + c2 w2 + · · ·+ cn wn. For any
vector u

0 := c01 v1 + c02 v2 + · · ·+ c0n vn in V and all scalars a, b in K, we
obtain

T0[au + bu
0] = T[(ac1 + bc01) v1 + (ac2 + bc02) v2 + · · ·+ (acn + bc0n) vn]

= (ac1 + bc01)w1 + (ac2 + bc02)w2 + · · ·+ (acn + bc0n)wn

= a(c1 w1 + c2 w2 + · · ·+ cn wn) + b(c01 w1 + c02 w2 + · · ·+ a0n wn)

= a(T0[u]) + b(T0[u0]) .

Thus, T0 is a linear map satisfying T0[vk] = wk for all 1 6 k 6 n.

Exercises

3.0.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The function f : K ! K defined by f (x) = x + 1 is a linear
transformation.

ii. There exists at least one linear transformation between any two
K-vector spaces.

iii. Conjugation of complex numbers defines an R-linear map from
C to itself, but not a C-linear map.

3.1 Kernels and Images
What are the canonical linear subspaces associated to a
linear transformation? Extending our nomenclature for matrices,
any linear map determines the two fundamental linear subspaces.

3.1.0 Definition. For a linear map T : V ! W, the kernel and image

are the following subsets:
(kernel) Ker(T) := {v 2 V | T[v] = 0},
(image) Im(T) := {w 2 W | there exists v 2 V such that w = T[v]}.

3.1.1 Remark. When A is an (m ⇥ n)-matrix and T : Kn ! Km is
defined by T[~x] := A~x, the kernel Ker(T) consists of the solutions to
homogeneous linear system T[~x] = A~x =~0.
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3.1.2 Proposition. For any linear map T : V ! W, the subsets Ker(T) and
Im(T) are linear subspaces of V and W respectively.

Proof. The properties [3.0.3] of linear maps include T[0V ] = 0W , so
Ker(T) 6= ? and Im(T) 6= ?. For all vectors v, v

0 in Ker(T) and all
scalars b, c in K, we have

T[b v + c v
0] = b(T[v]) + c(T[v0]) = b 0W + c 0W = 0W ,

so the linear combination b v + c v lies in Ker(T). Furthermore, for
all vectors w, w

0 in Im(T), there exists vectors v, v
0 in V such that

T[v] = w and T[v0] = w
0. Hence, for all scalars b, c in K, we obtain

T[b v + c v
0] = b(T[v]) + c(T[v0]) = b w + c w

0 2 Im(T). Thus, the
subspace test [1.2.0] shows that Ker(T) is a linear subspace of V and
that Im(T) is a linear subspace of W.

3.1.3 Definition. A map T : V ! W is defined to be
• injective if, for all vectors v, w in V, the equality T[v] = T[w]

implies that v = w.
• surjective if, for any vector w in W, there exists a vector v in V

such that T[v] = w.

3.1.4 Proposition (Injectivity and surjectivity via linearity).
i. A linear map T : V ! W is injective if and only if Ker(T) = {0V}.

ii. A linear map T : V ! W is surjective if and only if Im(T) = W.

Proof.
i. ): Suppose that T is injective. For any vector v in Ker(T), the

properties [3.0.3] of linear maps imply that T[v] = 0 = T[0].
Since T is injective, we have v = 0, which establishes that
Ker(T) = {0}.

(: Suppose that Ker(T) = {0V}. For any vectors v, w in V such
thatT[v] = T[w], we have 0W = T[v]� T[w] = T[v � w], which
means v � w 2 Ker(T). It follows that v � w = 0V and v = w,
establishing that T is injective.

ii. The map T is surjective if and only if, for any w 2 W, there exists
v 2 V such that T[v] = w, which is equivalent to Im(T) = V.

3.1.5 Problem. Consider the linear map S : C(R) ! C1(R) defined by
(S[ f ])(x) :=

R x
0 f (t) dt. Determine whether S is injective or surjective.

Solution. When 0 = S[ f ] =
R x

0 f (t) dt, the Fundamental Theorem of
Calculus implies that 0 = d

dx
R x

0 f (t) dt = f (x), so Ker(S) = {0} and
S is injective. Since (S[ f ])(0) =

R 0
0 f (t) dt = 0 and e0 = 1, there does

not exists a function f 2 C(R) such that S[ f ] = ex, which shows that
S is not surjective. The image Im(S) is the set of functions g 2 C1(R)

satisfying g(0) = 0, because the Fundamental Theorem of Calculus
also establishes that (S[g0])(x) = g(x)� g(0).
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3.1.6 Theorem (Dimension formula). Let V and W be K-vector spaces
such that V has a finite dimension. For any linear map T : V ! W, we have

dim(V) = dim
�
Ker(T)

�
+ dim

�
Im(T)

�
.

Proof. Set n := dim(V). Let u1, u2, . . . , uk be a basis for Ker(T), so
that k = dim

�
Ker(T)

�
. Since V is finite-dimensional, the extremal

properties of a basis [2.2.1] show that we can extend this linearly
independent set to a basis of V: there exists vectors v1, v2, . . . , vn�k
in V such that u1, u2, . . . , uk, v1, v2, . . . , vn�k is a basis of V. For all
indices j satisfying 1 6 j 6 n � k, set wj := T[vj]. We claim that the
vectors w1, w2 . . . , wn�k form a basis for Im(T). This claim implies
that the image Im(T) has dimension n � k = dim(V)� dim

�
Ker(T)

�

and confirms the dimension formula.
To prove the claim, we first show Im(T) = Span(w1, w2 . . . , wn�k).

The definition of the image implies that, for any vector w in Im(T),
there exists a vector v in V such that w = T[v]. Given our chosen
basis for V, there exists scalars a1, a2, . . . , ak, b1, b2, . . . , bn�k in K such
that v = a1 u1 + a2 u2 + · · ·+ ak uk + b1 v1 + b2 v2 + · · ·+ bn�k vn�k.
Applying the linear map T, we obtain

w = T[v]
= T[a1 u1 + a2 u2 + · · ·+ ak uk + b1 v1 + b2 v2 + · · ·+ bn�k vn�k]

= a1(T[u1]) + a2(T[u2]) + · · ·+ ak(T[uk])
+b1(T[v1]) + b2(T[v2]) + · · ·+ bn�k(T[vn�k])

= a1 0 + a2 0 + · · ·+ ak 0 + b1 w1 + b2w2 + · · ·+ bn�k wn�k

= b1 w1 + b2w2 + · · ·+ bn�k wn�k ,

so w 2 Span(w1, w2 . . . , wn�k) and Im(T) = Span(w1, w2 . . . , wn�k).
To establish linear independence, suppose that there exists scalars

c1, c2, . . . , cn�k in K such that c1 w1 + c2 w2 + · · ·+ cn�k wn�k = 0. It
follows that, for the vector u := c1 v1 + c2 v2 + · · ·+ cn�k vn�k, we have

T[u] = c1(T[v1]) + c2(T[v2]) + · · ·+ cn�k(T[vn�k])

= c1 w1 + c2 w2 + · · ·+ cn�k wn�k = 0 ,

so u 2 Ker(T). Since the vectors u1, u2, . . . , un span Ker(T), there
exists scalars d1, d2, . . . , dk 2 K such that u = d1 u1 + d2 u2 + · · ·+ dk uk,
which implies that

0 = u� u = d1 u1 + d2 u2 + · · ·+ dk uk � c1 v1 � c2 v2 � · · ·� cn�k vn�k .

Hence, we see that d1 = d2 = . . . = dn = c1 = c2 = · · · = cn�k = 0,
because the vectors u1, u2, . . . , uk, v1, v2, . . . , vn�k form a basis for V.
Therefore, the vectors w1, w2, . . . , wn�k are linearly independent and
form a basis for Im(T).


