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Exercises

3.1.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The kernel of a linear map always contains the additive identity
from is domain.

ii. The image of a linear map may be the empty set.
iii. The zero homomorphism is never injective.
iv. The zero homomorphism is surjective if and only if the target

vector space is the zero space.
v. The identity map is always bijective.

3.1.8 Problem. The set of all traceless (n ⇥ n)-matrices,

sl(n, C) := {A 2 Cn⇥n | tr(A) = 0} ,

is a linear subspace. Find a basis for sl(n, C). What is the dimension
of sl(n, C)?

3.2 Invertible Linear maps
How can a linear map have an inverse? We first record some
properties for the composition of linear maps.

3.2.0 Remark. For any two linear maps S : U ! V and T : V ! W,
the product T S : U ! W is the linear map defined, for all u 2 U, by
(T S)[u] = T

⇥
S[u]

⇤
). The product T S is defined only when the target

of S lies in the source of T. One verifies that this binary operation has
most of the properties expected of a product.

(associativity) (T1 T2) T3 = T1 (T2 T3) whenever the products are all defined.
(identity) T idV = T = idW T when T : V ! W.
(linearity) T(c1 S1 + c2 S2) = c1(T S1) + c2(T S2) when S1, S2 : U ! V, T : V ! W, and c1, c2 2 K.

(c1 T1 + c2 T2)S = c1 (T1 S) + c2 (T2 S) when S : U ! V, T1, T2 : V ! W, and c1, c2 2 K.

The product to two linear maps is not typically commutative.

3.2.1 Problem. Let D : K[t] ! K[t] denote differentiation and let
M : K[t] ! K[t] denote multiplication by t2. Show that D M 6= M D.

Solution. For all nonzero polynomials f in K[t], it follows that
(M D)[ f ] = t2 f 0 whereas (D M)[ f ] = D[t2 f ] = t2 f 0 + 2t f 6= t2 f 0.

The definition of an invertible linear map generalizes the definition
of an invertible matrix.

3.2.2 Definition. A linear map T : V ! W is invertible if there exists
a linear map S : W ! V such that S T = idV and T S = idW . In this
case, the map S is an inverse of T.

The identity map idV : V ! V is the
map whose output is equal to its input.
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3.2.3 Problem. Let V := RR be the R-vector space of real-valued
functions on the real line. Fix a 2 R and consider the two linear maps
T, S : V ! V defined by T[ f (x)] = f (x + a) and S[ f (x)] = f (x � a)
respectively. Show that S is an inverse of T.

The operators T and S translate the
graph of a function horizontally by a in
opposite directions.

Solution. Since (S T)[ f (x)] = S[ f (x + a)] = f
�
(x + a) � a

�
= f (x)

and (T S)[ f (x)] = T[ f (x � a)] = f
�
(x � a) + a

�
= f (x), we see that

S T = idV = T S and these translations maps are mutual inverses.

3.2.4 Proposition (Uniqueness of the inverse). For any invertible linear
map T : V ! W, the inverse map is unique and denoted by T�1 : W ! V.

Since T�1 T = idV and T T�1 = idW ,
the uniqueness of the inverse implies
that (T�1)�1 = T.

Proof. Suppose that the linear maps S1 : W ! V and S2 : W ! V are
both inverses of the linear map T : V ! W. It follows that

S1 = S1 idW = S1 (T S2) = (S1 T) S2 = idV S2 = S2 .

3.2.5 Proposition (Characterization of invertibility). A linear map is
invertible if and only if it is bijective.

The inverse of a linear map is
automatically a linear map.

Proof. Consider a linear map T : V ! W.
): Suppose that T is invertible. For any two vectors v and v

0 in V
satisfying T[v] = T[v0], we have v = T�1⇥T[v]

⇤
= T�1⇥T[v0]

⇤
= v

0,
so the map T is injective. For any vector w in W, we also have
w = T

⇥
T�1[w]

⇤
, so the map T is surjective.

(: Suppose that T is bijective. The surjectivity and injectivity of T
imply that, for each vector w in W, there exists a unique vector
S[w] in V such that T

⇥
S[w]

⇤
= w. In other words, there exists a

unique set map S : W ! V for which T S = idW . For any vector v

in V, it follows that

T
⇥
(S T)[v]

⇤
= T

⇥
S
⇥
T[v]

⇤⇤
= (T S)

⇥
T[v]

⇤
= idW

⇥
T[v]

⇤
= T[v] .

Since the map T is injective, we deduce that (S T)[v] = v for all
v in V and S T = idV . It remains to show that S is linear. For all
vectors w and w

0 in W and all scalars b and c in K, the linearity of
the map T gives

T
⇥
b(S[w]) + c(S[w0])

⇤
= b

�
T
⇥
S[w]

⇤�
+ c

�
T
⇥
S[w0]

⇤�
= b w + c w

0 .

Hence, b(S[w]) + c(S[w0]) is the unique vector in V that the map T
sends to b w + c w

0. Therefore, the definition of the map S implies
that S[b w + c w

0] = b(S[w]) + c(S[w0]).

3.2.6 Definition. Two K-vector spaces V and W are isomorphic,
denoted V ⇠= W, if there is an invertible linear map from V to W.

One may regard an invertible linear
map as a relabeling/renaming of the
elements in a vector space. Thus, two
isomorphic vectors spaces have the
same properties (from the perspective
of linear algebra).3.2.7 Theorem. Let V and W be finite-dimensional K-vector spaces. We

have dim(V) = dim(W) if and only if V is isomorphic to W.



32 linear algebra copyright © 2022 by gregory g. smith

Proof.
): Set n := dim(V) = dim(W). Let v1, v2, . . . , vn and w1, w2, . . . , wn

be bases for V and W respectively. A linear map is determined by
its values on a basis [3.0.7], so consider T : V ! W defined, for
all 1 6 j 6 n, by T[vj] = wj. For any vector w in W, there exists
scalars a1, a2, . . . , an in K such that w = a1 w1 + a2 w2 + · · ·+ an wn,
because the vectors w1, w2, . . . , wn span W. It follows that

T[a1 v1 + a2 v2 + · · ·+ an vn] = a1 T[v1] + a2 T[v2] + · · ·+ an T[vn]

= a1 w1 + a2 w2 + · · ·+ an wn = w ,

which shows that the linear map T is surjective. Similarly, for any
vector v in Ker(T), there exists scalars b1, b2, . . . , bn in K such that
v = b1 v1 + b2 v2 + · · ·+ bn vn because the vectors v1, v2, . . . , vn span
V. It follows that

0 = T[v] = T[b1 v1 + b2 v2 + · · ·+ bn vn]

= b1 T[v1] + b2 T[v2] + · · ·+ bn T[vn]

= b1 w1 + b2 w2 + · · ·+ bn wn .

Since the vectors w1, w2, . . . , wn are linearly independent, we
deduce that b1 = b2 = · · · = bn = 0, v = 0, and Ker(T) = {0}.
The linear characterization of injectivity [3.1.4] implies that the
map T is injective and the characterization of invertibility [3.2.5]
establishes that T is invertible. It follows that V ⇠= W.

(: Suppose that there is an invertible linear map T : V ! W. The
characterization of invertibility [3.2.5] implies that T is bijective
and the characterizations of injectivity and surjectivity [3.1.4]
imply that Ker(T) = {0} and Im(T) = W. Thus, the dimension
formula [3.1.4] gives

dim(V) = dim
�
Ker(T)

�
+dim

�
Im(T)

�
= 0+dim(W) = dim(W) .

3.2.8 Remark. Theorem3.2.7 establishes that, for any finite-dimensional
K-vector space V where n := dim V, we have V ⇠= Kn.

Exercises

3.2.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The product of nonzero linear transformations is never zero.
ii. The product of two linear transformations is never commutative.

iii. Consider any two linear transformations S and T, If we have
S T = I, then we must have T S = I.

iv. The K-vector spaces K[t]6n and Kn+1 are isomorphic.

3.2.10 Problem. Fix a nonnegative integer n. Show that a polynomial
f in R[t]6n is uniquely determined by the vector [x0 x1 · · · xn]

T in
Rn+1 where xk :=

R 1
0 tk f (t) dt.
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3.3 Invertible Operators
Are invertible maps from a vector space to itself special?
Some of the deepest and most important parts of linear algebra deal
with linear maps from a vector space to itself.

3.3.0 Definition. A linear map from a vector space to itself is called a
linear operator or endomorphism.

The set of all linear operators on the
K-vector space V is sometimes denoted
by End(V) := Hom(V, V).

3.3.1 Remark. For any K-vector space V, the simplest linear operators
are the identity map idV : V ! V is a linear operator and its scalar
multiples. For any scalar c 2 K, the linear map c idV : V ! V is
defined by c idV [v] := c v for all vectors v in V.

Square matrices correspond to linear
operators. More precisely, for any
nonnegative integer n, left
multiplication by an (n ⇥ n)-matrix
defines a linear operator on the
coordinate space Kn.

3.3.2 Problem. Let V be a finite-dimensional K-vector space. Prove
that the linear map T : V ! V is a scalar multiple of the identity map
if and only if, for any linear map S : V ! V, we have S T = T S.

Solution.
): Suppose that we have T = c idV for some scalar c in K. It follows

that S T = S (c idV) = c (S idV) = c S = (c idV) S = T S.
(: Suppose that the map T : V ! V commutes with every linear

operator on the K-vector space V. Choose a basis v1, v2, . . . , vn

for the finite-dimensional vector space V. For all 1 6 k 6 n, the
image T[vk] is a unique linear combination of the basis vectors.
Hence, there exists unique scalars a1,k, a2,k, . . . , an,k in K such that
T[vk] = a1,k v1 + a2,k v2 + · · ·+ an,k vn.

A linear map is determined by its values on a basis [3.0.7]. For
all 1 6 j 6 n, consider the linear map Pj : V ! V defined by
Pj[vj] = vj and Pj[vk] = 0 if k 6= j. When k 6= j, we obtain

0 = T[0] = (T Pj)[vk] = (Pj T)[vk] = Pj[a1,k v1 + a2,k v2 + · · ·+ an,k vn] = aj,k vj ,

so aj,k = 0 and T[vk] = ak,k vk.
Next, consider the linear map S : V ! V defined, for all

1 6 k 6 n � 1, by S[vk] = vk+1 and S[vn] = v1. It follows that

ak+1,k+1 vk+1 = T[vk+1] = (T S)[vk] = (S T)[vk] = S[ak,k vk] = ak,k vk+1

) (ak+1,k+1 � ak,k) vk+1 = 0 ,

so we deduce that c := a1,1 = a2,2 = · · · = an,n. We conclude that
T[vk] = c vk. for all 1 6 k 6 n, proving that T = c idV .

3.3.3 Problem. Demonstrate that the linear operator on K[t] defined
via multiplication by t2 is injective, but is not surjective.

Solution. Let M : K[t] ! K[t] be the map defined, for any polynomial
f in K[t], by M[ f ] := t2 f . The equation 0 = M[ f ] = t2 f implies that
f = 0. Since Ker(M) = {0}, the characterization of injectivity [3.1.4]
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shows that M is injective. Since every nonzero polynomial in the
image of M must have degree at least 2, the map M is not surjective:
neither 1 nor t belong to Im(M).

3.3.4 Problem. The backward shift operator B : KN ! KN is defined
by B[(a0, a1, a2, . . . )] := (a1, a2, a3, . . . ). Show that B is surjective, but is
not injective.

Solution. Since Ker(B) = {(a0, 0, 0, . . . ) 2 KN | a0 2 K} 6= {0}, the
map B is not injective. For any sequence (a0, a1, a2, . . . ) in KN, we
have B[(0, a0, a1, . . . )] = (a0, a1, a2, . . . ), so the map B is surjective.

In view of the last two problems, the next theorem is remarkable.

3.3.5 Theorem (Characterization of invertible operators). Let V be
a finite-dimensional vector space. For any linear map T : V ! V, the
following are equivalent.
a. The linear map T is invertible.
b. The linear map T is injective.
c. The linear map T is surjective.

Proof.
a ) b: The characterization of invertibility [3.2.5] shows that every

invertible linear map is bijective and, in particular, injective.
b ) c: Since T is injective, the characterization of injectivity [3.1.4]

implies that dim
�
Ker(T)

�
= 0. Hence, the dimension formula [3.1.6]

gives dim(V) = dim
�
Ker(T)

�
+ dim

�
Im(T)

�
= dim

�
Im(T)

�
. As

Im(T) ✓ V, we see that V = Im(T) and T is surjective.
c ) a: The surjectivity of T means Im(T) = V. Hence, the dimension

formula [3.1.6] implies that dim
�
Ker(T)

�
= 0 and the linear char-

acterization of injectivity [3.1.4] implies that the map T is injective.
Thus, the characterization of invertibility [3.2.5] demonstrates that
the linear map T is invertible.

3.3.6 Problem. Let f be a polynomial in R[t]. Establish that there
exists a polynomial g in R[t] such that d2

dt2

�
(t + 1)2g

�
= f .

Solution. Let n denote the degree of the polynomial f . Consider the
map T : R[t]6n ! R[t]6n defined, for all polynomials g in R[t]6n, by
T[g] := d2

dt2

�
(t + 1)2g

�
. Since multiplying by a nonzero polynomial by

(t + 1)2 increases the degree by 2 and differentiating twice decreases
the degree by 2, we see that T is a linear operator on R[t]6n.

Every polynomial whose second derivative equals 0 has the form
a0 + a1 t for some a0, a1 2 R. We deduce that Ker(T) = {0} and the
characterization of injectivity [3.1.4] implies that T is injective. Hence,
the characterization of invertible operators [3.3.5] shows that T is
surjective. Therefore, there exists g in R[T]6n such that T[g] = f .
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Exercises

3.3.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The zero homomorphism is always a linear operator.
ii. The identity map is always a linear operator.

iii. Consider any two linear operators S and T on a finite-dimensional
vector space. If we have S T = I, then we must have T S = I.

3.3.8 Problem. Let V be a finite-dimensional vector space. Consider
two linear operators S and T on V.

i. Show that the product S T is invertible if and only if both S and
T are invertible.

ii. Prove that S T = I if and only if T S = I.
iii. Give an example illustrating that both (a) and (b) are false over

an infinite-dimensional vector space.


