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To each linear operator, we introduce a special collection of scalars
that interpolate between the determinant and all of the entries of its
associated matrix.

5.0 Eigenvalues
Which scalars best encode a linear operator? A surprising
amount of information about a linear operator can be recovered by
focusing on the simplest type of behaviour: when the linear operator
acts as multiplication by a scalar.

5.0.0 Definition. Let V be a K-vector space. A scalar l in K is an
eigenvalue of a linear operator T : V ! V if there exists a nonzero
vector v in V such that T[v] = l v. Geometrically, the vectors T[v]
and v are parallel. Any nonzero vector v in V is an eigenvector of
linear operator T with eigenvalue l if T[v] = l v. The set of all
eigenvalues for T is called the spectrum of the linear operator T.

The lowercase "lambda" l is the
eleventh letter in the Greek alphabet.

Since every linear operator sends the
zero vector to the zero vector, we
exclude this degenerate situation from
the definition of an eigenvector.

5.0.1 Problem. Consider the linear operator T : Q2 ! Q2 defined by
T[x] := A x where the matrix A is

⇥ 1 6
5 2

⇤
. Show that the vector

⇥ 6
�5

⇤
is

an eigenvector of T, but the vector
⇥ 3
�2

⇤
is not.

Solution. For any scalar l in Q, we have


1 6
5 2

� 
6

�5

�
=


�24

20

�
= (�4)


6

�5

�
,


1 6
5 2

� 
3

�2

�
=


�9
11

�
6= l


3

�2

�

so the vector
⇥ 6
�5

⇤
is an eigenvector with eigenvalue �4 of the linear

map T whereas the vector
⇥ 3
�2

⇤
is not an eigenvector of T.

5.0.2 Problem. Let D : C•(R) ! C•(R) be the linear operator defined,
for any smooth function f , by D[ f ] := d f

dt . For any scalar a in R, show
that eat an eigenvector of D.

Solution. Since D[eat] = a eat, the function eat is an eigenvector for D
with eigenvalue a, so every real number is an eigenvalue of D.

5.0.3 Problem. Let J : C•(R) ! C•(R) be the linear operator defined
by (J[ f ])(x) :=

R x
0 f (t) dt. Prove that J has no eigenvalues.
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Solution by contradiction. Suppose that the smooth function f is an
eigenvector of the linear operator J. By definition, there would exist
a scalar l in R such that (J[ f ])(x) =

R x
0 f (t) dt = l

�
f (x)

�
and the

Fundamental Theorem of Calculus would give

f (x) =
d

dx

Z x

0
f (t) dt

�
=

d
dx

⇥
l
�

f (x)
�⇤

= l
�

f 0(x)
�

.

Since eigenvectors are nonzero, we would have l 6= 0. The general
solution to the differential equation f 0(x) = 1

l f (x) has the form
f (x) = Cex/l for some real constant C. However, the initial condition
(J[ f ])(0) = 0 = f (0) would imply that C = 0, so f would the zero
function which is a contradiction.

5.0.4 Proposition (Characterization of eigenvalues). Let T : V ! V be a
linear operator on a finite-dimensional K-vector space V. For any scalar l

in K, the following are equivalent.
a. The scalar l is an eigenvalue of T.
b. The linear operator l idV �T is not invertible.
c. The linear operator l idV �T is not injective.
d. The linear operator l idV �T is not surjective.

Proof. Suppose that the vector v in V is an eigenvector of T with
eigenvalue l in K. The defining equation T[v] = l v is equivalent to
(l idV �T)[v] = 0. Hence, the vector v is an eigenvector of the linear
operator T with eigenvalue l if and only if v lies in Ker(l idV �T).
An eigenvector is nonzero, so we have Ker(l idV �T) 6= {0}. On
a finite-dimensional vector space, the characterization of invertible
operators [3.3.5] shows the equivalence of conditions b – d.

5.0.5 Problem. Show that 7 is an eigenvalue of A =


1 6
5 2

�
.

Solution. It suffices to show that there exists a nonzero v in Q2 such
that (7 I � A)[v] = 0. Row operations give

7 I � A = 7


1 0
0 1

�
�


1 6
5 2

�
=


6 �6

�5 5

�
r1 7! 1

6 r1�����!
⇠


1 �1

�5 5

�
r2 7! r2+5 r1�������!

⇠


1 �1
0 0

�
,

which implies that Ker(7 I � A) = Span
�⇥ 1

1
⇤�

6= {0} and 7 is an
eigenvalue of A.

5.0.6 Theorem (Distinct eigenvalues have independent eigenvectors).
The eigenvectors corresponding to distinct eigenvalues of a linear operator
are linearly independent.

Proof by contradiction. Let V be a K-vector space and let m be a
positive integer. Consider a linear operator T : V ! V having m
distinct eigenvalues l1, l2, . . . , lm. Suppose that the eigenvectors
v1, v2, . . . , vm in V, where T[vj] = lj vj for all 1 6 j 6 m, are
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linearly dependent. Hence, there would exist a smallest positive
integer k such that the vector vk lies in Span(v1, v2, . . . , vk�1), whence
there would exist scalars c1, c2, . . . , ck�1 in K, not all zero, such that
vk = c1 v1 + c2 v2 + · · ·+ ck�1 vk�1. It follows that

lk vk = c1lk v1 + c2lk v2 + · · ·+ ck�1lk vk�1 ,

T[vk] = T[c1 v1 + c2 v2 + · · ·+ ck�1 vk�1]

= c1l1 v1 + c2l2 v2 + · · ·+ ck�1lk�1 vk�1 ,

which would imply that

0 = T[vk]� lk vk

= c1(l1 � lk) v1 + c2(l2 � lk) v2 + · · ·+ ck�1(lk�1 � lk) vk�1 .

Our minimal choice of k would ensure that the vectors v1, v2, . . . , vk�1
are linearly independent. Since lj 6= lk for all 1 6 j 6 k � 1, we would
have c1 = c2 = · · · = ck�1 = 0. However, this would mean that vk = 0

which contradicts the hypothesis that vk is an eigenvector. Thus, we
conclude that the vectors v1, v2, . . . , vm are linearly independent.

5.0.7 Corollary. Each linear operator on vector space V has at most dim V
distinct eigenvalues.

Proof. The dimension of a vector space give an upper bound on
the number of linearly independent vectors [2.2.1]. The assertion
follows because distinct eigenvalues have linearly independent
eigenvectors [5.0.6].

Exercises

5.0.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The scalar 1 is always an eigenvalue for the identity operator.
ii. The only eigenvalue of the identity operator is 1.

iii. On a fixed K-vector space V, every scalar in K is an eigenvalue
for some linear operator on V.

iv. A linear operator on a finite-dimensional vector space may have
infinitely many eigenvectors.

v. The scalar 0 can never be an eigenvalue.

5.1 Characteristic Polynomials
How do we determine just the eigenvalues of a linear
operator? Geometrically, applying a linear operator to an eigenvector
just rescales the eigenvector by the eigenvalue. However, it is useful
to have another algebraic mechanism for computing the eigenvalues
which does not require knowing the eigenvectors.
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5.1.0 Problem. Find the eigenvalues of the linear operator R : C2 ! C2

defined, for all scalars x and y in C, by R[x e1 + y e2] = �y e1 + x e2.

Solution. Suppose that the scalar l in C is an eigenvalue of the linear
operator R. By definition [5.0.0], there are scalars x and y in C, not
both zero, such that �ye1 + xe2 = R[xe1 + ye2] = (lx)e1 + (ly)e2.
Comparing coefficients gives �y = lx and x = ly. We deduce
that both x and y are nonzero. Moreover, we obtain �y = l2y and
0 = (1 � l2)y which implies that l = ±i.

5.1.1 Remark. Over the real numbers, the linear operator R : R2 ! R2,
defined by R[xe1 + ye2] = �y e1 + x e2, does not have any eigenvalues.
This linear operator is just a counterclockwise rotation by the angle
p/2 about the origin. This rotation of a nonzero vector in R2 is never
equal a scalar multiple of itself, so R has no real eigenvalues.

5.1.2 Definition. Let B := (v1, v2, . . . , vn) be an ordered basis for a
K-vector space V and consider the linear operator T : V ! V. The
characteristic polynomial of T, lying in K[t]6n, is equal to

The definition requires the vector space
to be finite-dimensional because
determinants are only defined for
square matrices.

pT(t) := det
�
(t idV �T)BB

�
.

5.1.3 Remark. Similar matrices have the same determinant [4.2.4] and
represent the same linear operator relative to different bases [4.2.7],
so the characteristic polynomial of the linear operator T does not
depend on the choice of the basis B.

Choosing the standard basis for Kn, we
see that, for any (n ⇥ n)-matrix A, the
characteristic polynomial is

p
A
(t) = det(t I � A) .

5.1.4 Problem. Find the characteristic polynomial of the matrix

A :=

2

664

5 �2 6 �1
0 3 �8 0
0 0 5 4
0 0 0 1

3

775 .

Solution. Since the determinant of a triangular matrix is the product
of its diagonal entries, we have

det(t I � A) = det

8
>>>>>>>>>:

2

664

t � 5 2 �6 1
0 t � 3 8 0
0 0 t � 5 �4
0 0 0 t � 1

3

775

9
>>>>>>>>>;
= (t � 5)2(t � 3)(t � 1) ,

so p
A
(t) = (t � 5)2(t � 3)(t � 1) = t4 � 14 t3 + 68 t2 � 130 t + 75.

5.1.5 Theorem. For a linear operator on a finite-dimensional vector space,
the roots of its characteristic polynomial coincide with its spectrum.

Proof. Let V be a vector space of dimension n, let B be an order basis
for V, and let T : V ! V be a linear operator. The characterization of
the determinant implies that the linear operator t idV �T is invertible
if and only if det((t idV �T)BB) 6= 0, so the assertion follows from the
characterization of eigenvalues [5.0.4].
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5.1.6 Corollary. Every linear operator on a nonzero finite-dimensional
C-vector space has an eigenvalue.

Proof. The fundamental theorem of algebra states that any non-
constant univariate polynomial with complex coefficients has a
complex root. Because the characteristic polynomial of the linear
operator has a root, Theorem 5.1.5 demonstrates that the linear
operator has an eigenvalue.

5.1.7 Corollary. A linear operator on a finite-dimensional vector space is
invertible if and only if 0 is not an eigenvalue.

Proof. Since there exists a multiplicative isomorphism between
the vector space of linear operators and the vector space of square
matrices [4.1.4, 4.2.6], we need only consider an (n ⇥ n)-matrix A

for some positive integer n. The characterization of the determinant
establishes that the matrix A is invertible if and only if we have
0 6= det(A) = (�1)n det(0 I � A) which means the number 0 is not a
root of the characteristic polynomial p

A
(t) = det(t I � A).

5.1.8 Problem. For any (2 ⇥ 2)-matrix A, prove that

p
A
(t) = t2 � tr(A) t + det(A) .

Solution. Let A := [ a c
b d ] for some scalars a, b, c, and d. It follows that

tr(A) = a + d, det(A) = ad � bc, and

det
8
>>:t


1 0
0 1

�
�


a c
b d

�9
>>;= det

8
>>:


t � a �c
�b t � d

�9
>>;

= (t � a)(t � d)� bc = t2 � (a + d) t + (ad � bc).

We conclude that p
A
(t) = t2 � tr(A) t + det(A).

5.1.9 Definition. The algebraic multiplicity of an eigenvalue is its
multiplicity as a root of the characteristic polynomial.

5.1.10 Problem. The characteristic polynomial of some linear operator
is t6 � 4t5 � 12t4. Find its eigenvalues and their algebraic multiplicities.

Solution. Factoring the characteristic polynomial gives

t6 � 4t5 � 12t4 = t4(t2 � 4t � 12) = t4(t � 6)(t + 2) .

Hence, the eigenvalues are 0 with algebraic multiplicity 4, 6 with
algebraic multiplicity 1, and �2 with algebraic multiplicity 1.

Exercises

5.1.11 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
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i. Every linear operator over a K-vector space has an eigenvalue.
ii. The characteristic polynomial of a linear operator depends on

choice of a basis for its underlying vector space.
iii. Similar matrices have the same characteristic polynomial.
iv. Matrices with the same characteristic polynomial are similar.
v. The algebraic multiplicity of an eigenvalue counts the number of

associated eigenvectors.

5.2 Triangularization
When is the matrix of a linear operator triangular? As
an initial attempt to find tractable matrices associated to a linear
operator, we concentrated on ordered bases that produce upper
triangular matrices.

5.2.0 Lemma. Let T be a linear operator on K-vector space V and let
B := (v1, v2, . . . , vn) be an ordered basis for V. The associated matrix (T)BB
is upper-triangular if and only if, for all 1 6 k 6 n, the image vector T[vk]

lies in the linear subspace Span(v1, v2, . . . , vk).

Proof.
): Suppose that the matrix A := (T)BB of the linear operator T

relative to the ordered basis B is upper-triangular. For all 1 6 j 6 n
and all 1 6 k 6 n, let the scalar aj,k in K be the (j, k)-entry in
the matrix A. Since aj,k = 0 when j > k, the definition of matrix
multiplication implies that, for all 1 6 k 6 n, we have

(T[vk])B = (T)BB (vk)B = A ek

= a1,k e1 + a2,k e2 + · · ·+ ak,k ek + 0 vk+1 + 0 vk+2 + · · ·+ 0 vn

= a1,k (v1)B + a2,k (v2)B + · · ·+ ak,k (vk)B ,

For all 1 6 k 6 n, we see that T[vk] lies in Span(v1, v2, . . . , vk).
(: Suppose that T[vk] 2 Span(v1, v2, . . . , vk) for all 1 6 k 6 n. Hence,

there exists scalars a1,k, a2,k, . . . , ak,k in K such that

T[vk] = a1,k v1 + a2,k v2 + · · ·+ ak,k vk

= a1,k v1 + a2,k v2 + · · ·+ ak,k vk + 0 vk+1 + 0 vk+2 + · · ·+ 0 vn .

It follows that (T[vk])B =
⇥
a1,k a2,k · · · ak,k 0 0 · · · 0

⇤
T and the

matrix (T)BB is upper-triangular.

5.2.1 Theorem (Triangularization). Let V be a finite-dimensional C-vector
space. For any linear operator T : V ! V, there exists an ordered basis of V
such that the matrix of T relative to this basis is upper-triangular.

Inductive proof. We proceed by induction on n := dim V. The base
case n = 1 is vacuous because every (1 ⇥ 1)-matrix is upper-triangular.
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Suppose that n > 1. The linear operator T has an eigenvalue l

in C; see [5.1.6]. Consider the linear subspace W := Im(l idV �T);
see [3.1.2]. The linear operator l idV �T : V ! V is not surjec-
tive [5.0.4], so dim W < dim V. Given any vector w in W, we have
T[w] = l w � (l idV �T)[w]. Since the vector w is in W, the second
term (l idV �T)[w] is in W, and W is a linear subspace, it follows
that image vector T[w] is also in W. Thus, the restriction T|W is a
linear operator on W. By the induction hypothesis, there exists a
ordered basis v1, v2, . . . , vm of W such that the matrix of the linear
operator T|W relative to this basis is upper-triangular. Hence, the
characterization of triangular operators [5.2.0] establishes that, for all
1 6 k 6 m, we have T[vk] 2 Span(v1, v2, . . . , vk). Extending the basis
for W to a basis for V, there exist vectors vm+1, vm+2, . . . , vn in V such
that v1, v2, . . . , vn is a basis for V. For each m + 1 6 j 6 n, observe
that T[vj] = l vj � (l idV �T)[vj]. Because (l idV �T)[vj] is in W,
it follows that T[vj] 2 Span(v1, v2, . . . , vk, vj) ⇢ Span(v1, v2, . . . , vj).
Therefore, the characterization of triangular operators [5.2.0] proves
that the matrix of T relative to v1, v2, . . . , vn is upper-triangular.

The next result highlights some of the benefits of finding a basis
for which the matrix of a linear operator is upper-triangular.

5.2.2 Proposition. Let V be a finite-dimensional K-vector space, let T be
a linear operator on V, and let B an order basis for V such that the matrix
A := (T)BB is upper-triangular. The eigenvalues of T are precisely the
entries on the diagonal of the matrix A. Furthermore, the linear operator T
is invertible if and only if all the entries on the diagonal of A are nonzero.

Proof. For all 1 6 j 6 n and all 1 6 k 6 n, let the scalar aj,k in K

denote the (j, k)-entry in the matrix A. By hypothesis, the matrix
A is upper-triangular, so the matrix t I � A is also upper-triangular.
Since the map sending a linear operator to its corresponding matrix
is linear [4.1.4] and the determinant of a triangular matrix is the
product of its diagonal entries, the characteristic polynomial of the
linear operator T is

pT(t) = det
�
(t idV �T)BB

�
= det(t I � A) =

n

’
k=1

(t � ak,k) .

The roots of the characteristic polynomial [5.1.5] coincide with the
spectrum, so the diagonal entries in the matrix A are the eigenvalues
of the linear operator T. Lastly, a linear operator is invertible if and
only if 0 is an eigenvalue [5.1.7].

This proposition fails without the upper-triangular hypothesis.



54 linear algebra copyright © 2022 by gregory g. smith

5.2.3 Problem. Exhibit an invertible linear operator whose matrix
has only zeros on the diagonal and a non-invertible linear operator
whose matrix as only nonzero entries on the diagonal.

Solution. Let B := (v1, v2, . . . , vn) be an ordered basis for a K-vector
space V. Consider the linear maps S : V ! V and T : V ! V defined,
respectively, by S[vn] := v1, S[vk] := vk+1 for all 1 6 k < n, and
T[vj] = v1 + v2 + · · ·+ vn for all 1 6 j 6 n. It follows that Sn = idV ,

(S)BB =

2

66664

0 1 0 · · · 0 0
0 0 1 · · · 0 0...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

3

77775
, and (T)BB =

2

66664

1 1 1 · · · 1
1 1 1 · · · 1...

...
...

. . .
...

1 1 1 · · · 1
1 1 1 · · · 1

3

77775
.

Since det
�
(T)BB

�
= 0, the linear operator T is not invertible.

Exercises

5.2.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Given a linear operator on any finite-dimensional K-vector
space, there exists an ordered basis such that the associated
matrix is upper-triangular.

ii. Given a linear operator on any finite-dimensional C-vector space,
there exists an ordered basis such that the associated matrix is
lower-triangular.

iii. On any finite-dimensional C-vector space, there exists an or-
dered basis such that, for every linear operator, the associated
matrix is upper-triangular.

5.3 Estimating Eigenvalues
How can we find bounds on the eigenvalues of a matrix?
There are simple geometric ways to estimate the eigenvalues of a
complex square matrix. To describe the heuristic for generating these
bounds, let the scalar aj,k in C, for all 1 6 j 6 n and all 1 6 k 6 n,
denote the (j, k)-entry in the matrix A. There is a unique expression
A = D + B where

D :=

2

6664

a1,1 0 . . . 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · an,n

3

7775
and B :=

2

6664

0 a1,2 a1,3 · · · a1,n
a2,1 0 a2,3 · · · a2,n

...
...

...
. . .

...
an,1 an,2 an,3 · · · 0

3

7775
.

Consider the perturbations A# := D + # B for any scalar # in C. In
particular, we have A1 = A and A0 = D. The eigenvalues of A0 = D

are clearly a1,1, a2,2, . . . , an,n because D is a triangular matrix. It seems
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plausible that, when |#| is small enough, the eigenvalues of A# will be
near a1,1, a2,2, . . . , an,n. The circle theorem makes this idea precise.

5.3.0 Definition. For all 1 6 j 6 n, let rj be the sum of the absolute
values of the off-diagonal entries in the j-th row of the matrix A;

rj :=
n

Â
k=1
k 6=j

|aj,k|

= |aj,1|+ |aj,2|+ · · ·+ |aj,j�1|+ |aj,j+1|+ |aj,j+2|+ · · ·+ |aj,n| .

The j-th Gershgorin disk is the circular disk Dj lying in the complex
plane with center aj,j in C and radius rj in R:

Dj :=
�

z 2 C
�� |z � aj,j| 6 rj

 
.

Im

Re

rjaj,j
Im(aj,j)

Re(aj,j)

Figure 5.0: A Gershgorin disk Dj

5.3.1 Problem. Find the Gershgorin disks for the matrix


1 + 2 i 1
4 + 3 i �3

�
.

Im

Re

Figure 5.1: The Gershgorin disks for
Problem 5.3.1

Solution. We have r1 = |1| = 1 and r2 = |4 + 3 i| =
p

42 + 32 = 5, so
D1 =

�
z 2 C

�� |z � (1 + 2 i)| 6 1
 

and D2 =
�

z 2 C
�� |z + 3| 6 5

 
.

5.3.2 Theorem (Gershgorin circle). For any complex (n ⇥ n)-matrix A,
every eigenvalue of A is contained in a Gershgorin disk.

The circle theorem was first published
by Semyon Gershgorin in 1931.

Proof. Given an eigenvalue l in C of the matrix A with eigenvector
v =

⇥
v1 v2 · · · vn

⇤
T, we have A v = l v. By comparing entries, we

obtain Ân
k=1 aj,k vk = lvj for all 1 6 j 6 n. Let vm be a coordinate

of the vector v having the largest absolute value. When j = m, the
triangle inequality gives

|l vm � am,m vm| =
�����

n

Â
k=1

am,k vk � am,m vm

����� =

�������

n

Â
k=1
k 6=m

am,k vk

�������

6
n

Â
k=1
k 6=m

��am,k
�� |vk| 6

n

Â
k=1
k 6=m

��am,k
�� |vm| = |vm|

n

Â
k=1
k 6=m

��am,k
�� = |vm| rm .

We conclude that |vm| |l � am,m| 6 |vm| rm and |l � am,m| 6 rm.

5.3.3 Problem. Sketch disks that contain the eigenvalues of

C :=

2

4
7 2 �1

�1 10 1
�1 1 6

3

5 .

Solution. The disks are
�

z 2 C
�� |z � 7| 6 3

 
,
�

z 2 C
�� |z � 10| 6 2

 
,

and
�

z 2 C
�� |z � 6| 6 2

 
. This matrix is invertible because the

Gershgorin disks do not contain the origin.

Im

Re

Figure 5.2: The Gershgorin disks for
Problem 5.3.3
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5.3.4 Lemma. For any square matrix A, both A and A
T have the same

eigenvalues.

Proof. Since det(t I � A) = det
�
(t I � A)T

�
= det(t I � A

T) and the
roots of the characteristic polynomial equal the spectrum [5.1.5], the
claim follows.

Since A
T has the same eigenvalues as A, the circle theorem can

sometimes be applied to A
T to get better estimates. In particular, we

may intersect the Gershgorin regions for A and A
T. For instance, the

eigenvalues of the matrix C lie in the region

�
z 2 C

�� |z � 7| 6 2
 
[
�

z 2 C
�� |z � 10| 6 2

 
[
�

z 2 C
�� |z � 6| 6 2

 
.

Im

Re

Figure 5.3: The Gershgorin disks for C
T

Let P be an invertible matrix. Since the matrix P
�1

A P has the
same eigenvalues as A, we can also apply the circle theorem to
P
�1

A P. For some choice of P, the bounds obtained may be sharper.
A convenient choice is D = diag(d1, d2, . . . , dn) with dj > 0. In this
case, we have D

�1
A D = [dkaj,k/dj].

5.3.5 Problem. Sketch disks that contain the eigenvalues of
2

664

0 d2/d1 0 0
d1/d2 5 d3/d2 0

0 d2/d3 20 d4/d3
0 0 d3/d4 20

3

775

for a few values of (d1, d2, d3, d4) 2 N4.

Solution. Applying the Gershgorin Circle Theorem yields Table 5.1.

(d1, d2, d3, d4) Gershgorin disks

(1, 1, 1, 1)
�

z 2 C
�� |z| 6 1

 
[
�

z 2 C
�� |z � 5| 6 2

 
[
�

z 2 C
�� |z � 20| 6 2

 

(2, 1, 1, 1)
�

z 2 C
�� |z| 6 1

2
 
[
�

z 2 C
�� |z � 5| 6 3

 
[
�

z 2 C
�� |z � 20| 6 3

 

(1, 2, 1, 1)
�

z 2 C
�� |z| 6 2

 
[
�

z 2 C
�� |z � 5| 6 1

 
[
�

z 2 C
�� |z � 20| 6 2

 

Table 5.1: Gershgorin disks for various
similar matrices

Intersecting these regions shows that the eigenvalues are contained in

�
z 2 C

�� |z| 6 1
2
 
[
�

z 2 C
�� |z � 5| 6 1

 
[
�

z 2 C
�� |z � 20| 6 2

 
.

Using numerical methods, one shows that the eigenvalues are approxi-
mately �0.194735438, 5.127483946, 19.03511963, 21.03176997.

Exercises

5.3.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The Gershgorin Theorem allows one to determine exactly the
eigenvalues of any matrix.
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ii. The Gerschgorin Theorem never allows one to determine exactly
the eigenvalues of a matrix.

iii. The Gerschgorin disks of a triangular matrix have radii of length
zero.

5.3.7 Problem. A square matrix in strictly diagonally dominant if
the absolute value of each diagonal entry is greater than the sum of
the absolute values of the remaining entries in that row. Prove that a
strictly diagonally dominant matrix must be invertible.

5.3.8 Problem. Sketch the Gerschgorin disks in the complex plane that
contain the eigenvalues of the matrix

A :=

2

664

10 0 �1 1
�1 12 i �1 2
�1 3 20 2

1 2 i 3 �45

3

775 .


