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Exercises

7.1.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The norm of any vector is a complex number.
ii. The only vector of norm 0 is the zero vector.

iii. In any inner product space, there exists only finitely many
vectors having norm 1.

iv. Orthonormal vectors always satisfy non-trivial linear relations.

7.1.9 Problem. Let n be a nonnegative integer. For any vectors v in Cn,
consider the norm defined by kvk1 := |v1|+ |v2|+ · · ·+ |vn| 2 R.

i. Show that this norm satisfies the following four properties:

(homogeneity) kcvk1 = |c| kvk1 for all c in C and all v in Cn.
(nonnegativity) kvk1 > 0 for all v in Cn.

(positivity) kvk1 = 0 if and only if v = 0.
(subadditivity) kv + wk1 6 kvk1 + kwk1 for all v and w in Cn.

ii. Whenever n > 2, prove that this norm does not satisfy the
parallelogram identity.

7.1.10 Problem. For any two vectors v and w in a complex inner
product space , prove that kv + wk kv � wk 6 kvk2 + kwk2. When
does equality hold?

7.1.11 Problem. For all vectors u, v, and w in a complex inner product
space, prove that ku � vk kwk 6 kv � wk kuk+ kw � uk kvk.

7.2 Orthonormalization
How do we construct an orthonormal basis? There is an
effective process for producing an orthonormal set from any linearly
independent set of vectors in an inner product space.

7.2.0 Algorithm (Orthonormalization). Erhard Schmidt published this process
in 1907, indicating that Jorgen Gram
had essentially the same idea in 1883.
However, Pierre-Simon Laplace also
described this process in 1816.

input: a list (v1, v2, . . . , vm) of linearly independent vectors
in an inner product space.

output: an orthonormal list (u1, u2, . . . , um) of vectors such that
Span(u1, u2, . . . , uk) = Span(v1, v2, . . . , vk) for all 1 6 k 6 m.

For k from 1 to m do loop over input list

Set wk := vk � hvk, u1i u1 � hvk, u2i u2 � · · ·� hvk, uk�1i uk�1; create orthogonal vectors

Set uk := 1
kwkk

wk; normalize the vectors

Return the list (u1, u2, . . . , um).

Before explaining why this algorithm produces the expected
output, we illustrate it with an example.
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7.2.1 Problem. Consider the real vector space R4 equipped with the
standard inner product. Find an orthonormal basis for Span(v1, v2, v3)

where v1 :=
⇥
1 1 1 1

⇤
T, v2 :=

⇥
0 1 1 1

⇤
T, and v3 :=

⇥
0 0 1 1

⇤
T.

Solution. Applying the orthonormalization algorithm [7.2.0] gives

k = 1 : w1 = v1 =
⇥
1 1 1 1

⇤T ) u1 = 1
2
⇥
1 1 1 1

⇤T

k = 2 : w2 = v2 � hv2, u1i u1

=
⇥
0 1 1 1

⇤T � 3
4
⇥
1 1 1 1

⇤T = 1
4
⇥
�3 1 1 1

⇤T ) u2 = 1
2
p

3

⇥
�3 1 1 1

⇤T

k = 3 : w3 = v3 � hv3, u1i u1 � hv3, u2i u2

=
⇥
0 0 1 1

⇤T � 2
4
⇥
1 1 1 1

⇤T � 2
12
⇥
�3 1 1 1

⇤T

= 1
3
⇥
0 �2 1 1

⇤T ) u3 = 1p
6

⇥
0 �2 1 1

⇤T ,

so the list (u1, u2, u3) is an orthonormal basis for Span(v1, v2, v3).

Correctness of Algorithm 7.2.0. We demonstrate, by induction on the
number m of input vectors, that the output does have the desired
properties. If m = 0, then the algorithm returns the empty set,
which is the unique basis for the zero linear space. Suppose that the
number m is positive. When k = m � 1 in the loop, the induction
hypothesis establishes that (u1, u2, . . . , um�1) is an orthonormal list
and Span(u1, u2, . . . , um�1) = Span(v1, v2, . . . , vm�1). For each index
j satisfying 1 6 j < m, the linearity of inner products [7.0.0] and
orthonormality [7.1.3] give

hwm, uji =
⌦
vm � hvm, u1i u1 � hvm, u2i u2 � · · ·� hvm, um�1i um�1, uj

↵

= hvm, uji � hvm, u1i hu1, uji � hvm, u2i huk, u2i � · · ·� hvm, um�1i hum�1, uji
= hvm, uji � hvm, uji = 0 .

Hence, the vectors u1, u2, . . . , um�1, wm are pairwise orthogonal. Since
the vectors v1, v2, . . . , vm are linearly independent, we deduce that the
vector vm is not in Span(v1, v2, . . . , vm�1) = Span(u1, u2, . . . , um�1),
so wm 6= 0. Thus, the vector um = 1

kwmkwm is well-defined and
has unit length. It follows that (u1, u2, . . . , um) is an orthonormal
list and, in particular, linearly independent [7.1.6]. The defining
equations for the vectors um and wm imply that the vector vm lies in
Span(u1, u2, . . . , um) and Span(v1, v2, . . . , vm) ✓ Span(u1, u2, . . . , um).
Since (v1, v2, . . . , vm) and (u1, u2, . . . , um) are linearly independent,
the linear subspaces they span have the same dimension, so we
conclude that Span(v1, v2, . . . , vm) = Span(u1, u2, . . . , um).

This algorithm has two immediate consequences.

7.2.2 Corollary. Let V be a finite-dimensional inner product space.

i. The vector space V has an orthonormal basis

ii. Every orthonormal list in V can be extended to an orthonormal basis.
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Proof.

i. Because V is a finite-dimensional vector space, it has a basis
v1, v2, . . . , vn [2.2.1] where n := dim(V) is a nonnegative integer.
Applying the orthonormalization algorithm to these vectors
produces an orthonormal list (u1, u2, . . . , un) such that

Span(u1, u2, . . . , un) = Span(v1, v2, . . . , vn) = V .

An orthonormal set of vectors in linearly independent [7.1.6], so
we conclude that u1, u2, . . . , un is a basis for V.

Since the empty set is vacuously an
orthonormal list, part ii implies part i.

ii. Suppose the list (u1, u2, . . . , um) of vectors in V is orthonormal.
Since the vectors u1, u2, . . . , un are linearly independent [7.1.6],
they can be extended to a basis [2.2.1]. In other words, there
exists vectors vm+1, vm+2, . . . , vn in V such that the list

(u1, u2, . . . , um, vm+1, vm+2, . . . , vn)

forms a basis for V. Applying the orthonormalization algorithm
to this list produces an orthonormal basis V. Moreover, the
algorithm does not change the first m vectors because they are
already orthonormal. More explicitly, for all 1 6 k 6 m, we have

wk = uk � huk, u1i u1 � huk, u2i u2 � · · ·� huk, uk�1i uk�1 = uk .

As a second illustration of the orthonormalization algorithm, we
construct some orthogonal polynomials.

7.2.3 Problem. Consider the R-vector space R[t]62 equipped with
the inner product h f , gi :=

R 1
�1 f (x) g(x) dx where f and g in R[t]62.

Convert the monomial basis (1, t, t
2) into an orthonormal basis.

Solution. The orthonormalization algorithm gives

k = 1 : w1 = 1 ,

kw1k2 =
Z 1

�1
1 dx = 2 , ) u1 = 1

kw1k
w1 = 1p

2
;

k = 2 : w2 = t � ht, u1i u1 = t � 1
2

Z 1

�1
x dx = t � 1

2

h
1
2 x

2
i1

�1
= t ,

kw2k2 =
Z 1

�1
x

2
dx =

h
1
3 x

3
i1

�1
= 2

3 , ) u2 = 1
kw2kw2 =

p
3p
2

t ;

k = 3 : w3 = t
2 � ht2, u1i u1 � ht2, u2i u2 = t

2 � 1
2

Z 1

�1
x

2
dx � 3

2 t

Z 1

�1
x

3
dx

= t
2 � 1

2

h
1
3 x

3
i1

�1
� 3

2

h
1
4 x

4
i1

�1
t = t

3 � 1
3 ,

kw3k2 =
Z 1

�1
(x

2 � 1
3 )

2
dx = 1

9

Z 1

�1
9 x

4 � 6 x
2 + 1 dx

= 1
9

h
9
5 x

5 � 2 x
3 + x

i1

�1
= 2

45 (9 � 10 + 5) = 8
45 , ) u3 = 1

kw3kw3 =
p

5
2
p

2
(3 t

2 � 1) .

Therefore, the polynomials 1p
2

,
p

3p
2

t,
p

5
2
p

2
(3 t

2 � 1) form an orthonormal
basis of the space R[t]62 of polynomials of degree at most 2.

This orthonormal basis already
appeared in Problem 7.1.4.
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Exercises

7.2.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Every linearly independent set of vectors in an inner product
space is orthonormal.

ii. Every orthogonal list can be extended to an basis of pairwise
orthogonal vectors.

iii. By rescaling the vectors, any orthogonal list can be converted
into an orthonormal list.

iv. The output of the orthonormalization algorithm depends on the
order of the vectors in the input list.

7.2.5 Problem. Set n := 2. Consider the R-vector space R[t]6n with the
inner product defined, for all polynomials f and g in R[t]6n, by

h f , gi :=
Z •

0
f (x) g(x) e

�x
dx .

i. Transform the monomial basis (1, t, t
2, . . . , t

n) of R[t]6n into
a orthonormal basis

�
L0(t), L1(t), . . . , Ln(t)

�
by applying the

orthonormalization algorithm.
ii. For each integer j satisfying 0 6 j 6 n, consider the linear

operator Dj : R[t]6n ! R[t]6n defined, for all polynomials f in
R[t]6n, by Dj[ f ] := t f

00(t) + (1� t) f
0(t) + j f (t). For all 0 6 j 6 n,

show that Span(Lj) = Ker(Dj).
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Orthogonal projections produce to a data-fitting technique. The
best fit in the least-squares sense minimizes the sum of squared
residuals—the difference between an observed value and the fitted
value provided by a model. This chapter develops this idea.

8.0 Projections
How do we understand general orthogonal projections?
Although we have discussed orthogonal projections onto a line, we
gain new insights by generalizing these ideas to linear operators. We
first identify a special type of linear operator.

8.0.0 Definition. A projection is a linear operator P such that P
2 = P. For any scalar c in C, the matrix

⇥ 1 c

0 0
⇤

defines a projection on C2 via left
multiplication. Indeed, we have
h
1 c
0 0

i h
1 c
0 0

i
=
h
1 + 0 c + 0
0 + 0 0 + 0

i
=
h
1 c
0 0

i
.

8.0.1 Lemma (Properties of projections). Let V be a vector space and let

P : V ! V be a projection.

i. For any vector w in the image Im(P), we have P[w] = w.

ii. We have Im(P) \ Ker(P) = {0}.

iii. For any vector v in V, there exists unique vectors w in Im(P) and z in

Ker(P) such that v = w + z, P[v] = w, and (idV �P)[v] = z.

Proof.

i. For any vector w in Im(P), there is a vector v such that w = P[v].
Since P

2 = P, we have P[w] = P
⇥
P[v]

⇤
= P

2[v] = P[v] = w. Thus,
the restriction of P to Im(P) is the identity operator.

ii. Suppose that the vector w lies in the intersection Im(P) \ Ker(P).
Part i shows that P[w] = w. Since w is in Ker(P), we also have
P[w] = 0. Therefore, we have w = 0 and Im(P) \ Ker(P) = {0}.

iii. We first prove existence. For any vector v in V, consider the
vectors w := P[v] and z := v � w. It follows that w lies in Im(P)

and w + z = w + (v � w) = v. Using part i, linearity gives
P[z] = P[v � w] = P[v]� P[w] = w � w = 0, so z lies in Ker(P).
Hence, the required expression is v = w + z.

To prove uniqueness, suppose that we have w + z = ew + ez
where w, ew 2 Im(P) and z, ez 2 Ker(P). Since both Im(P) and
Ker(P) are linear subspaces [3.1.2], it follows that w � ew 2 Im(P)

and ez � z 2 Ker(P), so the vector w � ew = ez � z lies in the
intersection Im(P) \ Ker(P). Part ii implies that w � ew = 0 and



80 linear algebra copyright © 2022 by gregory g. smith

ez � z = 0 or w = ew and ez = z. Thus, an expression v = w + z,
where w 2 Im(P) and z 2 Ker(P), is unique.

An inner product distinguishes a special class of projections.

8.0.2 Definition. Let V be an inner product space. A projection
P : V ! V is orthogonal if the linear subspaces Im(P) and Ker(P) are
orthogonal.

Saying that Im(P) and Ker(P) are
orthogonal means that, for any vector w
in Im(P) and any vector z in Ker(P),
we have hw, zi = 0.

8.0.3 Lemma (Characterization of orthogonal projections). Let V be an

inner product space. A projection P : V ! V is orthogonal if and only if, for

all vectors u and v in V, we have hu, P[v]i = hP[u], vi.

Proof.

): Suppose that the linear operator P is an orthogonal projection.
The properties of projections show that there exist unique vectors
x and w in Im(P) and unique vectors y and z in Ker(P) such
that u = x + y and v = w + z. The orthogonality of the linear
operator P implies that hy, wi = 0 and hx, zi = 0. It follows that
hu, P[v]i = hx, wi = hP[u], vi because

hu, P[v]i = hx + y, P[w + z]i = hx + y, P[w] + P[z]i = hx + y, w + 0i = hx, wi+ hy, wi = hx, wi ,

hP[u], vi = hP[x + y], w + zi = hP[x] + P[y], w] + zi = hx + 0, w + zi = hx, wi+ hx, zi = hx, wi .

(: For all vectors u and v in V, suppose that hu, P[v]i = hP[u], vi.
For any vector w in Im(P) and any vector z in Ker(P), there exists
a vector v such that w = P[v] and P[z] = 0. The properties of an
inner product [7.0.9] show that

hw, zi = hP[v], zi = hv, P[z]i = hv, 0i = 0 ,

so the linear subspaces Im(P) and Ker(P) are orthogonal.

Orthogonal projections have an elegant description.

8.0.4 Proposition (Projection formula). Let U be a finite-dimensional

linear subspace in an inner product space V. For any orthonormal basis

u1, u2, . . . , um of the linear subspace U, the unique orthogonal projection

P : V ! V satisfying Im(P) = U is defined, for all vectors v in V, by

P[v] := hv, u1i u1 + hv, u2i u2 + · · ·+ hv, umi um.

Proof. For any vector v in V, the properties of projections show that
there exists unique vectors w in Im(P) and z in Ker(P) such that
v = w + z and P[v] = P[w + z] = P[w] + P[z] = w + 0 = w.
Orthonormal coordinates [7.1.7] relative to the basis u1, u2, · · · , um

establish that P[v] = w = hw, u1i u1 + hw, u2i u2 + · · ·+ hw, umi um.
Since the vectors u1, u2, . . . , um are linearly independent, we see that

0 =
�
hv, u1i u1 + hv, u2i u2 + · · ·+ hv, umi um

�
� P[v]

= hv � w, u1i u1 + hv � w, u2i u2 + · · ·+ hv � w, umi um

= hz, u1i u1 + hz, u2i u2 + · · ·+ hz, umi um
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if and only if, for all 1 6 k 6 m, we have hz, uki = 0. Thus, to have
P[v] = hv, u1i u1 + hv, u2i u2 + · · · + hv, umi um for any vector v
in V, it both necessary and sufficient that each vector z in Ker(P)

be orthogonal to the vectors u1, u2, . . . , um. Equivalently, the linear
subspace Ker(P) must be orthogonal to linear subspace U. For any
vector v in V, setting P[v] = hv, u1i u1 + hv, u2i u2 + · · ·+ hv, umi um

implies that P[uk] = uk for all 1 6 k 6 m, so Im(P) = U.

Exercises

8.0.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Every linear operator is a projection.
ii. A linear operator T that satisfies Im(T) \ Ker(T) = {0} must be a

projection.
iii. Given any linear subspace W in an inner product space V, there

is a unique projection P on V such that Im(P) = W.
iv. Given any linear subspace W in an inner product space V, there

is a unique orthogonal projection P on V such that Im(P) = W.

8.0.6 Problem. Determine all of the eigenvalues of a projection and
describe the corresponding eigenspaces.

8.1 Approximate Solutions
What is the best approximate solution to a linear system?
For an inconsistent linear system, it is fruitful to find an approximate
solution. The next theorem demonstrates that orthogonal projections
play a pivotal role in locating optimal approximations.

8.1.0 Theorem (Orthogonal projections minimize norms). Let V be an

inner product space and let P : V ! V be an orthogonal projection. For any

vector v in V and any vector u in Im(P), we have kv � P[v]k 6 kv � uk.

Furthermore, we have kv � P[v]k = kv � uk if and only if u = P[v].

Proof. For any vector v in V, the properties of projections [8.0.1] show
that there exist unique vectors w in Im(P) and z in Ker(P) such that
v = w + z and P[v] = P[w] + P[z] = w + 0 = w. The difference
w � u is also the image Im(P), because both u and w lie in Im(P)

and Im(P) is a linear subspace [3.1.2]. The orthogonality [8.0.2] of
the projection P asserts that the linear subspaces Im(P) and Ker(P)

are orthogonal, so hz, w � ui = 0. Hence, the nonnegativity of inner
products [7.0.0] and the Pythagorean theorem [7.1.2] yield

kv � P[v]k2 = kv � wk2 = kzk2 6 kzk2 + kw � uk2 = kz + w � uk2 = kv � wk2 ,

Taking square roots, we obtain kv � P[v]k 6 kv � uk. Equality holds
if and only if 0 = kw � uk = kP[v]� uk which, by the properties of
norms [7.1.1], is equivalent to P[v] = u.
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8.1.1 Remark. Let T : V ! V be linear operator on an inner product
space V. For any vector b in V, consider the equation T[x] = b. When
the vector b lies in the image Im(T), this equation has a solution:
there exists v 2 V such that T[v] = b. When the vector b does not lie
in the image Im(T), the best approximate solution is a vector v in V

minimizing kb � T[v]k. Since orthogonal projections minimize norms,
the optimal approximation is a vector v in V such that the vector T[v]
equals the orthogonal projection of b onto the image of T.

This method of least squares is a
standard approach used to approximate
the solution of overdetermined systems.

8.1.2 Problem. Let V be the R-vector space of continuous functions
over the interval [�1, 1] ⇢ R with h f , gi :=

R 1
�1 f (s) g(s) ds. Find

the quadratic polynomial g(x) that is the best approximation to the
function f (x) = e

x over the interval [�1, 1].

The best approximation is not the
quadratic Taylor polynomial for e

x .

Solution. Problem 7.2.3 establishes that 1p
2

,
p

3p
2

x,
p

5
2
p

2
(3x

2 � 1) form
an orthonormal basis for the linear subspace W of the inner product
space V consisting of polynomials of degree at most 2. Since the
best approximation is given by the orthogonal projection onto W,
projection formula [8.0.4] gives

1
2 h f , 1i 1 + 3

2 h f , xi x + 5
8 h f , 3x

2 � 1i (3x
2 � 1)

= 1
2

⇣R 1
�1 e

s
ds

⌘
1 + 3

2

⇣R 1
�1 s e

s
ds

⌘
x + 5

8

⇣R 1
�1(3 s

2 � 1) e
s

ds

⌘
(3 x

2 � 1)

= 1
2

⇣⇥
e

s
⇤1
�1

⌘
1 + 3

2

⇣⇥
(s � 1) e

s
⇤1
�1

⌘
x + 5

8

⇣⇥
(3 s

2 � 6 s + 5) e
s
⇤1
�1

⌘
(3x

2 � 1)

= 1
2 (e � e

�1) + 3 e
�1

x + 5
8 (2 e � 14 e

�1)(3x
2 � 1)

=
� 1

4 (7 e � 33 e
�1)

�
1 + (3 e

�1)x +
� 15

4 (e � 7 e
�1)

�
x

2 .

8.1.3 Problem. Consider the inner product space of trigonometric poly-
nomials having degree at most n with h f , gi := 1

p

R p
�p f (s) g(s) ds.

Prove that
� 1p

2
, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

�
is

an orthonormal basis for this vector space.

Fourier series are the least-squares
approximations of periodic functions in
terms of (typically infinite) sums of
sines and cosines.

Solution. For all nonnegative integer j and all positive integers k such
that j 6= k, using integration by parts twice gives
Z p

�p
cos(js) cos(ks) ds =

h
1
k

cos(js) sin(ks)
is=p

s=�p
+ j

k

Z p

�p
sin(js) sin(ks) ds

=
h
� j

k2 sin(js) cos(ks)
is=p

s=�p
+ j

2

k2

Z p

�p
cos(js) cos(ks) ds ,

It follows that 0 =
�
(k2 � j

2)/(k2)
� R p

�p cos(js) cos(ks) ds, so we
deduce that hcos(jx), cos(kx)i = 0. Similar calculations demonstrate
that hcos(jx), sin(kx)i = 0 and hsin(jx), sin(kx)i = 0. As 1 = cos(0x),
this establishes the desired orthogonality.

It remains to see that the functions are appropriately normalized.
Observe that h 1p

2
, 1p

2
i = 1

p

R p
�p

1
2 ds = 1

2p

⇥
s
⇤s=p

s=�p
= 1. For a positive

integer k, integration by parts gives
Z p

�p
cos2(ks) ds =

h
1
k

cos(ks) sin(ks)
is=p

s=�p
+
Z p

�p
sin2(ks) ds =

Z p

�p
1� cos2(ks) ds .
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It follows that 2
R p
�p cos2(ks) ds =

R p
�p 1 ds =

⇥
s
⇤s=p

s=�p
= 2p, so

we see that hcos(kx), cos(kx)i = 1
p

R p
�p cos2(ks) ds = 1. A similar

computation gives hsin(kx), sin(kx)i = 1
p

R p
�p sin2(ks) ds = 1.

8.1.4 Problem. Find the trigonometric polynomial of degree at most n

that best approximates the function saw(x) = 2
�

x

2p �
⌅ 1

2 + x

2p

⇧�
.

The sawtooth wave function saw(x) is
piecewise linear: saw(x) = x

p for all
�p < x 6 p; saw(x + 2jp) = saw(x)
for all x 2 R and all j 2 Z.

p 2p�p�2p

1

�1

Figure 8.0: Graph of sawtooth wave

Solution. Problem 8.1.3 provides the relevant orthonormal basis. The
best approximation is given by the orthogonal projection, which by
the projection formula [8.0.4] is

hsaw(x), 1i 1
2 +

n

Â
j=1

hsaw(x), cos(jx)i cos(jx) +
n

Â
k=1

hsaw(x), sin(kx)i sin(kx) .

Since hsaw(x), cos(jx)i = 1
p2

R p
�p s cos(js) ds = 0 and

hsaw(x), sin(kx)i = 1
p2

Z p

�p
s sin(ks) ds

=
h
� 1

kp2 s cos(ks)
is=p

s=�p
+ 1

kp2

Z p

�p
cos(ks) ds

= � 2 cos(kp)
kp + 1

k2p2

⇥
sin(ks)

⇤s=p
s=�p

= 2(�1)k+1

kp ,

the best approximation of saw(x) is 2
p

n

Â
k=1

(�1)k+1

k
sin(kx).

8.1.5 Remark. One can prove that, as n ! •, this approximation
converges pointwise to saw(x).

Exercises

8.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Any projection onto a linear subspace in an inner product space
minimizes norms.

ii. When the vector v is a solution to the linear equation T[x] = b,
the orthogonal projection of T[v] onto the image of T equals b.

iii. Taylor polynomials always provide the best approximation to a
function.

iv. The defining basis for the space of trigonometric polynomials is
an orthonormal basis.

8.1.7 Problem. Fix a nonnegative integer n and consider the n-element
set X :=

� 2p`
n

2 R
�� 0 6 ` 6 n � 1

 
. Let V := CX the complex inner

product space, consisting of all functions from the finite set X of real
numbers to C with the inner product

h f , gi := Â
x2X

f (x) g(x) =
n�1

Ầ
=0

f
� 2p`

n

�
g
� 2p`

n

�
.


