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Exercises

9.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. The identity operator is an isometry.
ii. For any complex inner product space V and any scalar c in C,
the operator ¢ idy is an isometry.
iii. Over a real vector space, every transformation can be triangular-
ized by an orthogonal matrix.

9.1.7 Problem. Let S: V — V be an isometry on a finite-dimensional
inner product space. For any eigenvalue A of S, show that |A| = 1.

9.1.8 Problem. Prove that the product of two isometries is also an
isometry.

9.1.9 Problem. Let Q be an (1 x n)-matrix that defines, via left
multiplication, an isometry on the standard inner product space C".
Prove that |det(Q)| = 1.

9.1.10 Problem. Let M and N be (n x n)-complex matrices. Sup-
pose that M and N are simultaneously unitarily similar to upper-
triangular matrices. In other words, there exists a unitary matrix Q
such that Q* M Q and Q* N Q are both upper-triangular matrices.
Show that every eigenvalue of the difference MN — N M must be zero.

9.2 Spectral Theorem

WHICH LINEAR OPERATORS HAVE AN ORTHONORMAL EIGENBASIS?
Linear operators that are compatible with their adjoint are intriguing.

9.2.0 Definition. A linear operator T is normal if T*T = T T*.

9.2.1 Problem. Confirm that every isometry on a finite-dimensional
inner product space is a normal operator.

Solution. Suppose that the linear operator S: V. — V is an isometry
on a finite-dimensional inner product space. The characterization of
isometries [9.1.1, 9.1.3] implies that S*S = idy = S 5%, so the linear
operator S is normal. O

The naive condition that a linear operator commutes with its
adjoint map has extraordinary consequences.

9.2.2 Lemma (Properties of normal operators). Let T: V — V bea
normal operator on an inner product space V.
i. For all vectors v in V, we have || T[v]|| = ||T*[v]]|.
ii. We have Ker(T) = Ker(T*).
iti. For any eigenvector v of T with eigenvalue A, we have T*[v] = A v.
iv. The eigenvectors of T having distinct eigenvalues are orthogonal.
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Proof.
i. The definition [9.0.3] of the adjoint map and the definiton of a
normal operator combine to give

T = (T[], T[o]) = (v, (T* T)[v])
= (0, (TT)[o]) = (T*[0], T*[v]) = | T*[2]]*.

The nonnegativity [7.0.0] of inner products shows that, by taking
the square root, we obtain || T[v]|| = ||T*[v]||-

ii. The definition [3.1.0] of the kernel, the nonnegativity [7.0.0] of
inner products, and part i give the following equivalences:

veKer(T) & Tv]|=0 < ||T[v]| =0
S ||IT*[0]| =0 & T*[v] =0 < v € Ker(T")

which proves that Ker(T) = Ker(T*).

iii. Consider the linear operator S: V — V defined by S := A idy —T.
The properties [9.0.4] of adjoint maps give S* = A idy —T*.
Using the normality of T, we have

SS* = (Aidy —T)(Aidy —T*) = |A| idy —AT* —AT+TT*
= [Aidy —AT* = AT+ T*T = (Aidy —T*)(A idy —T) = S*S,

so the linear operator S is also normal. Since T[v] = A v, we see
that the vector v is in Ker(S) and part ii shows that v is also in
Ker(S*). Since 0 = S*[v] = (A idy —T*)[v] = Av — T*[v], we
conclude that T*[v] = A v.

iv. Suppose that v and w are eigenvectors of the linear operator
T having the distinct eigenvalues A and y respectively. Since
T[v] = Av and T[w] = pw, the definition [9.0.3] of the adjoint
map, the properties [7.0.0] of inner products, and part iii give

Ao, w) = (Ao, w) = (T[], w) = (o, T"[w]) = (v, Fw) = p (v, w) ,

so we obtain (A — u) (v, w) = 0. Since A # pu, we conclude that
(v, w) = 0 and the eigenvectors are orthogonal. O

The next result intertwines the theory of eigenvectors and the
theory of inner product spaces.

9.2.3 Normal Spectral Theorem. Let V be a finite-dimensional complex
inner product space. A linear operator T: V. — V is normal if and only if
there exists an orthonormal basis of V consisting of eigenvectors for T.

Proof. Setn :=dimV.

=: Suppose that the linear operator T is normal. The orthonormal
triangularization theorem [9.1.5] demonstrates that there is an
orthonormal basis U := (uy,uy,...,u,) of V such that the matrix
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A := (T)Y is upper-triangular. Forall1 <j<nandall1 <k <7,
let the scalar a; be the (j, k)-entry in the matrix A. Since A is
upper-triangular, we already know that a;; = 0 whenever j > k.
We prove by induction on j that a;; = 0 when j < k. In other
words, the matrix A is diagonal and the vectors uy,uy,...,u, are
eigenvectors of the linear operator T.

We have || Tlu][2 = [[A e = [lay e =
consistency [9.0.5] between adjoints and the Con]ugate—transpose
asserts that (T*)Y = A*, the Parseval identity [7.1.5] yields

2 Since the

IT*[u1]||* = ||A e1||* = |[ar1e1 +Tiaer+ - +arnen|?® = |ar1 | o g

The properties of normal operators include || T[u1]||? = ||T*[u1]||?,
500 = | T*[m]|> = [|T[m]|> = lar2* + |ar s + - + [ar,q [ Tt
follows that a1, = a;3 = - - - = a1, = 0 proving the base case.

For the induction step, assume that 0 < j < n and, forall i < j,
that a;; = 0 when i < k. As in the base case, we have

T ||* = [|Aej||> = [|arjer +azjer+ - +ajje* = [|ajjei]|* = |aj|?

IT*[w)||? = || A ¢jl|* = |[a7; ¢; + Tjjr1 €11+ + T enl* = [ag|* + Jajja >+ + |aju]?

7

which yields a;;11 = a;j10 =+ =4a;, =0.

«: Suppose that the vectors u;,uy, ..., u, form an orthonormal
eigenbasis for the linear operator T. For each 1 < k < n, there
exists scalar Ay in C such that T[u;| = A ug. The orthonormal
coordinates [7.1.7] and the definition [9.0.3] of the adjoint map
establish that, for any 1 < k < n, we have

T[] = (T*[me], wa) w1 + (T[], m2) wa + - - + (T[], un) un
= (ug, Tlwr]) w1 + (ug, Tlup]) ua + -+ - + (uk,T[un]) Uy

(g, A ug) uy + (g, Adpmo) up + -+ -+ (U, Ay ) Uy

M <uk, uy) uy + Ay (g, uo) up + - —&—)Tn (uy, uy) uy

A u

Hence, we obtain
[T*[ug]] = TAeme] = AT [ug] = AeAae = |Axl” we,
*[Tlu]] = T M) = A T[] = MeAgwe = |Ag|*

Since the linear operators T T* and T* T agree on a basis, we
conclude that TT* = T* T and T is a normal operator. O

Exercises

9.2.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
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i. For any finite-dimensional inner product space V and any
complex scalar c, the linear operator ¢ idy is normal.
ii. Every linear operator is normal.
iii. A linear operator T is normal if and only if its adjoint T* is
normal.
iv. The eigenvalues of a normal operator are always real.

9.2.5 Problem. Let V be a finite-dimensional inner product space.
Show that a linear operator T: V' — V is normal if and only if
IT[0]|| = ||T*[v]|| for all vectors v in V.

9.2.6 Problem. Let V be a finite-dimensional inner product space.
Show that a linear operator T: V' — V is normal if and only if
(T[v1], T[v2]) = (T*[v1], T*[v2]) for all vectors v1 and v, in V.

9.2.7 Problem. Let V be a finite-dimensional inner product space.
Show that a linear operator T: V' — V is normal if and only if the
linear operators 4 (T + T*) and 3(T — T*) commute.

9.2.8 Problem. Let V be a finite-dimensional complex inner product
space and fix complex scalar c. Show that a linear operator T: V — V
is normal if and only if the linear operator ¢ idy +T is normal.

9.2.9 Problem. Exhibit two normal operators S: C> — C? and
T: C? — C? such that the product S T is not normal.

9.2.10 Problem. Let V be a finite-dimensional complex inner product
space. Show that a normal operator T: V — V is an isometry if and
only if all its eigenvalues have absolute value 1.

9.2.11 Problem. Consider the complex matrix C := % E i_i % I_ j .
i. Show that C is normal.

ii. Find an orthonormal eigenbasis for C.
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Positivity of Operators

When the eigenvalues of a linear operator are all real, one may ask
if they are nonnegative or positive. This innocuous requirement has
deep ramifications. This chapter launches an exploration of this idea.

10.1 Self-Adjoint Operators

WHICH LINEAR OPERATORS ON A REAL INNER PRODUCT SPACE
HAVE AN ORTHONORMAL EIGENBASIS? In this situation, linear
operators that equal their adjoint are especially important.

10.1.0 Definition. A linear operator T: V — V on an inner product
space V is self-adjoint if T = T*.

10.1.1 Lemma. Verify that every self-adjoint operator is normal.

Proof. Suppose that the linear operator T is self-adjoint. It follows
that T*T = T2 = T T*, so T is normal. O

10.1.2 Problem. Let n be a positive integer. Consider R"” equipped
with the standard inner product. Show that left multiplication by a
real (n x n)-matrix determines a self-adjoint operator on R" if and
only if the matrix is symmetric.

Solution. The matrix of the operator defined to left multiplication rel-
ative to the standard basis equals the original matrix. Since the stan-
dard basis is an orthonormal basis for IR” (relative to the canonical
inner product), the adjoint of this operator is the conjugate-transpose
of the matrix [9.0.5]. Thus, the matrix is self-adjoint if and only if it
equals its transpose, which is equivalent to being symmetric. O

Being equal to one’s adjoint has an impact on a linear operator’s
eigenvalues and eigenspaces.

10.1.3 Lemma (Properties of self-adjoint operators). Let T: V — V bea
self-adjoint linear operator on an inner product space V.

i. For any vector v in V, the inner product (T [v],v) is a real number.

ii. All of the eigenvalues of the linear operator T are real.
iii. The linear subspaces Ker(T) and Im(T) are orthogonal.

Proof.
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i. The definition [9.0.3] of the adjoint map, the definition of a self-
adjoint operator, and the conjugate-symmetry [7.0.0] of an inner
product give (T[v],v) = (v, T*[v]) = (v, T[v]) = (T[v],v), so we
see that (T[v],v) is a real number.

ii. Let v be an eigenvector of linear operator T with eigenvalue A.
Properties [7.0.0, 7.0.9] of inner products, the definition [9.0.3] of
the adjoint map, and the definition of a self-adjoint operator give

Av,v) = (Av,v) = (T[v],v) B
= (v, T"[v]) = (v, T[v]) = (v,Av) = A (v,v) .

Since 0 = (A — A) {v,v) and eigenvectors are nonzero [5.0.0],
the positivity [7.0.0] of inner products shows that A = A. We
conclude that A is a real number.

iii. Consider the vector u in Ker(T) and the vector w in Im(T). It
follows that T[u] = 0 and there exists a vector v in V such that
T[v] = w. The definition [9.0.3] of the adjoint map, the definition
of self-adjoint, and the properties [7.0.9] of inner products give
(u,w) = (u, T[v]) = (T*[u],v) = (T[v],v) = (0,v) =0, so the
linear subspaces Ker(T) and Im(T) are orthogonal. O

Over the real numbers, we have the different spectral theorem.

10.1.4 Self-Adjoint Spectral Theorem. Let V be a finite-dimensional real
inner product space. A linear operator T: V — V is self-adjoint if and only
if there exists an orthonormal basis of V consisting of eigenvectors for T.

Proof.

=: Suppose that T is self-adjoint operator. Since every self-adjoint
operator is normal [10.1.1], the normal spectral theorem [9.2.3]
implies that there exists an orthonormal basis for V consisting of
eigenvectors for T. The properties of self-adjoint operators show
that the eigenvalues of T are all real, so taking the real part of
each vector in this basis for V yields an eigenbasis for T. Applying
the orthonormalization algorithm [7.2.0] to this real eigenbasis
produces an orthonormal basis of V consisting of real eigenvectors
for T because eigenvectors of T having distinct eigenvalues are
orthogonal [9.2.2].

<: Suppose that real inner product space V has an orthonormal
basis consisting of eigenvectors for T. As the matrix of T relative
to this basis is a real diagonal matrix, it is equal to its conjugate
transpose. Hence, we have T = T* and T is self-adjoint. O

10.1.5 Problem. Let V be a finite-dimensional complex inner product
space and let the linear operator T: V' — V be normal operator.
Prove that T is self-adjoint if and only if all its eigenvalues are real.

COPYRIGHT © 2022 BY GREGORY G. SMITH
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Solution. Since the properties of self-adjoint operators establishes that
all eigenvalues are real, it suffices to prove the converse. The normal
spectral theorem [9.2.3] implies that there exists an orthonormal basis
U of V consisting of eigenvectors for T. Since the eigenvalues of T are
all real, the consistency [9.0.5] between adjoints and the conjugate-
transpose implies that (T*)¥ = ((T)})" = (T)X. Therefore, it
follows that T* = T. O

10.1.6 Problem. Find an orthonormal eigenbasis for the matrix

Solution. The characteristic polynomial of the matrix A is

det(tI—A):det[ 21— —2 || BB et

t—3 2 —4 |) nondrs t—7 0 t—7
2 -6 -2
-4 -2 t-3 - 0 —7) t-7
1 0 1 B 1
—(t—7)%det||2 t—6 —2| | 2220 (¢ 2n det 0 t— -
0 2 1 - 0 2
1 0 1
2R 72 det| [0 t+2 0] |=(t—7)2(t+2),
- 0 2 1
so the eigenvalues are —2 and 7. Since
_ _n : 61;2 51y = —9"1p
-5 2 —4| "2 0 —18 —9| m7n 1 —4 -1 101
21— A = 2 _8 —2 M) 1 —4 —1 % [0 2 1] M) [O 2 1]
-4 -2 —5 0 —18 —9 - 0 0 0 b 000
[ 4 2 —4] non2n Ty o] nen (201 -2
TI-A=| 2 1 —p| BEBEER 1y g | 220y o o,
|—4 -2 4] - o 0 o ~ [0 0 O

the eigenspaces are Ker(—2I — A) = Span(3[2 1 —2|T) and
Ker(7I—A) =Span([1 —2 0]",[1 0 1]7) For the 7-eigenspace,
the orthonormalization algorithm [7.2.0] gives u; = (1/ V?2) [1 0 1]T

nd ”H_;[gﬂ—iH

wy = {_%] —;[[1 -2 0] [
1

Thus, the orthogonal matrix - 3:% diagonalizes A. O

1
3Vv2

—_O

1
0
1

WIN W= WIN
—_ —_
S oo
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Exercises

10.1.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. Every normal operator is self-adjoint.
ii. A linear operator has real eigenvalues if and only if it is self-
adjoint.
iii. A complex symmetric matrix must have real eigenvalues.
iv. A real skew-symmetric matrix must have real eigenvalues.

10.1.8 Problem. Let T: V — V be a self-adjoint operator on a finite-
dimensional inner product space. Assuming that 3 and 5 are the only
eigenvalues of T, prove that T> — 8 T + 15 idy = 0.

10.1.9 Problem. Exhibit a linear operator T: R®> — R3 such that 3 and
5 are its only eigenvalues, but T? — 8 T + 15 idgs # 0.

10.1.10 Problem. When b # 0, orthogonally diagonalize the matrix

a0b
A=1(0a0
b0a

10.2 Positive-Semidefinite Operators

HOW ARE SELF-ADJOINT OPERATORS WITH NONNEGATIVE EIGEN-
VALUES DISTINCTIVE? Capitalizing on the first property of self-adjoint
operators [10.1.3], we single out a special class of linear operators.

10.2.0 Definition. Let V be an inner product space. A self-adjoint
operator T: V — V is positive-semidefinite if, for all vectors v in V,
we have (T[v],v) > 0. Similarly, a self-adjoint operator T is positive-
definite if, for all nonzero vectors v in V, we have (T[v],v) > 0.

For a matrix, being positive-definite is not the same as having

nonnegative entries. 2.1 0 0
10.2.1 Problem. Show that C := _(1) _% _% _(1) defines a positive-
definite operator on R*. 0 0 -1 2

Solution. For all vectors v in R*, we have

2 -1 0 0] [
-1 2 -1 0f |v
0 -1 2 -1 |v3
0 0 -1 2 04
21)1—02
—v1+ 20y — U3
—0p + 203 — 1y
—v3 + 204
= 202 — 20,0, + 203 — 20,05 + 203 — 2030, + 203
= 0] + (01 — v2)? + (02 — 03)* + (v3 — v4)* + 0§ > 0.

(Cv,v) =0 Cv = (07 vo v3 vy

= [Ul Uy U3 04]

COPYRIGHT © 2022 BY GREGORY G. SMITH



COPYRIGHT © 2022 BY GREGORY G. SMITH POSITIVITY OF OPERATORS

It follows that (Cv,v) = 0 if and only if v = 0. Since C = C* = C’,
we conclude that the matrix C is positive-definite. O

The next result imitates the various descriptions of nonnegative
real numbers among all complex numbers.

10.2.2 Theorem (Characterizations of positive-semidefinite operators).

Let V and W be finite-dimensional inner product spaces over the same field

of scalars. For any linear operator T: V — V, the following are equivalent:

a. The linear operator T is positive-semidefinite.

b. The linear operator T is self-adjoint and its eigenvalues are all
nonnegative real numbers.

c. The linear operator T has a positive-semidefinite square root.

d. The linear operator T has a self-adjoint square root.

e. There exists a linear map S: V — W such that T = §* S.

Proof. Setn :=dimV.

a = b: A positive-semidefinite linear operator is, by definition,
self-adjoint. For any eigenvector v of the self-adjoint operator T
with eigenvalue A, the linearity [7.0.0] of inner products gives
0 < (T[v],v) = (Av,0) = A (v,0) = A||v|% As eigenvectors are
nonzero [5.0.0], we deduce that A > 0.

b = c: Since any self-adjoint linear operator is normal [10.1.1], the
normal spectral theorem [9.2.3] shows that T has an orthonormal
eigenbasis uy,up, ..., u,. Let A1, Ay ..., A, be the corresponding
nonnegative eigenvalues. Consider the linear map S: V. — V
defined, for all 1 < k < 1, by S[ug] := /Apuy; see [3.0.7]. Since
the matrix of S relative to the ordered basis (u7,uy,...,u,) is a real
diagonal matrix, we see that S is a self-adjoint operator. For all
vectors v in V, the orthonormal coordinates [7.1.7], the linearity of
S, and the properties [7.0.0,7.0.9] of an inner product give

(S[o],0) =

—
o
™=
T~
N
=

'>”j1/i<0/uk>uk>—<f<v,u]> f (0, ) >

k=0 j=1 k=1

—

I
™=
=

-
Il
-
o
Il
—

(v,u;) (v, ux) (S[uj), ux) = ii@ uj) (0, ) VA; (uj, uy)

(v,u;) (0, we)VA; 8i5 = Y (0, ui) (v, me) VA, =

k=1 k=

(v, u)|* VA > 0,

I
™=
™=
1=

-
Il
-
o~
Il
—
—

so S is positive-semidefinite. For all 1 < k < n, we also have
S*uy] = S[S[me]] = S[VArw] = VA Sl = (VA)? e = Ay = Tluy],

establishing that S is a positive-semidefinite square root of T.
c = d: A positive-semidefinite linear operator is, by definition, self-
adjoint, so this implication is trivial.
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d = e: Suppose that there exists a self-adjoint operator S: V. — V
such that T = S2. It follows that S* = Sand T = §> = SS = S*S.

e = a: Consider a linear map S: V — W such that T = §*S. The
properties [9.0.4] of adjoints give T* = (5*S)* = §*S = T, so the
linear operator T is self-adjoint. For all vectors v in V, we also have

(T[o],0) = ((5* $)[0], v) = (5*[S[]], v) = (S[e], S[o]) = IIS[o]||* >0,
which proves that T is positive-semidefinite. O

10.2.3 Corollary (Unique positive-semidefinite square roots). A positive-
semidefinite operator on a finite-dimensional inner product space has unique
positive-semidefinite square root.

Proof. Let V be a finite-dimensional inner product space. Suppose
that T: V — Vand S: V — V are a positive-semidefinite operators
such that T = S, It follows that ST = SS* = §3 = §?S = T S. Let
A1, A, ..., A be the distinct eigenvalues of T and, forall 1 < k < 7,
let Wy denote the Ai-eigenspace of T. For any vector v in Wy, we have
T[S[v]] = (TS)[v] = (ST)[v] = S[T[v]] = S[Axv] = Ak S[v], proving
that the image vector S[v] is also in Wy. Thus, the restriction S|y, is
a linear operator on Wy. Since S is self-adjoint, the normal spectral
theorem [9.2.3] establishes that there exists an orthonormal basis

u, U, ..., Uy for the linear subspace W consisting of eigenvectors
for S. Forall1 < j < my, let y; be the nonnegative eigenvalue
corresponding to u;. Since

Auj = Tluj] = $*[uj] = S[S[uj]] = Sluju] = ; S[uj] = 4} u,

we see that y;j = V' Ay. It follows that the restriction S lw, : Wi — Wy is
the diagonal operator v/ Ay idy, . Therefore, the positive-semidefinite
square root of T is uniquely determined. O

Exercises

10.2.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
i. A linear operator is positive-definite if and only if it is self-
adjoint and its eigenvalues are all positive.
ii. Every positive-definite operator is invertible.
iii. The inverse of a positive-definite operator is also itself positive-
definite.
iv. Only positive-semidefinite operators have square roots.
v. Every positive-semidefinite operator has a unique self-adjoint
square root.

10.2.5 Problem. For any linear map T: V — W between inner product
spaces, prove that T* T is a positive-semidefinite operator on V and
T* T is a positive-semidefinite operator on W.
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