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10.3 Polar Decomposition
Can we generalize the polar form for complex numbers?
Since complex (1 ⇥ 1)-matrices are linear operators on the vector
space C1, we can ambitiously attempt to lift ideas from the complex
numbers to linear maps. We have the following analogy in mind.

numbers maps
complex number: z 2 C linear map: T : V ! W

conjugate: z 2 C adjoint: T
? : W ! V

points on the unit circle: z z = 1 isometries: T
?

T = idV

real numbers: z = z self-adjoint operators: T = T
?

nonnegative real numbers: z > 0 positive-semidefinite operators
polar form: z = re

iq ??

Table 10.1: Analogy between complex
numbers and linear operators

Given the success of the first parts in this analogy, one wonders if
every linear operator can be expressed as a product of a positive-
semidefinite operator and an isometry.

10.3.0 Lemma (Positive part). Let V and W be finite-dimensional inner

product spaces. For any linear map T : V ! W, let
p

T? T : V ! V denote

the unique positive-semidefinite square root of the positive-semidefinite

operator T
?

T : V ! V.

Theorem 10.2.2 and Corollary 10.2.3
already establish that T

?
T has a unique

positive-semidefinite square root.

i. For any vector v in V, we have kT[v]k
W

=
���pT? T

�
[v]
��

V
.

ii. We have Ker(T) = Ker(
p

T? T).

Proof.

i. For any vector v in V, the definition [7.1.0] of the norm, proper-
ties [9.0.4] of adjoint maps, and the self-adjointness of the linear
map

p
T? T give

kT[v]k2
W

= hT[v], T[v]i
W

= h(T?
T)[v], vi

V
=
⌦
(
p

T? T)2[v], v
↵
V
=
⌦
(
p

T? T)
⇥
(
p

T? T)[v]
⇤
, v
↵
V

= h(
p

T? T)[v], (
p

T? T)?[v]i
V
=
⌦
(
p

T? T)[v], (
p

T? T)[v]
↵
V
= k(

p
T? T)[v]k2

V
.

The nonnegative [7.0.0] of inner products shows that, by taking the
square root, we have kT[v]k

W
= k(

p
T?T)[v]k

V
.

ii. The definition of the kernel [3.1.0], the positivity [7.1.1] of norms,
and part i yields the following equivalences:

v 2 Ker(T) , T[v] = 0W , kT[v]k
W

= 0 , k(
p

T?T)[v]k
V
= 0 , (

p
T?T)[v] = 0V , v 2 Ker(

p
T?T) ,

which proves that Ker(T) = Ker(
p

T?T).

10.3.1 Theorem (Polar decomposition). Let V and W be two finite-

dimensional inner product spaces such that dim W > dim V. For any

linear map T : V ! W, there exists an isometry S : V ! W such that

T = S
p

T? T.
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Proof. Since the linear operator
p

T? T is self-adjoint [10.2.3], the
self-adjoint spectral theorem [10.1.4] implies that there exists an
orthonormal basis of V consisting of eigenvectors for

p
T? T. The

basis vectors lying in the 0-eigenspace span Ker(
p

T? T) and the
basis vectors with nonzero eigenvalues span Im(

p
T? T). Hence,

for all vectors v in V, there exists unique vectors v0 in Ker(
p

T? T)

and v00 in Im(
p

T? T) such that v = v0 + v00. The properties [10.1.3]
of self-adjointness prove that the linear subspaces Ker(

p
T? T) and

Im(
p

T? T) are orthogonal. To exhibit the isometry S, we construct
linear maps on Ker(

p
T? T) and Im(

p
T? T) separately.

Set n := dim V and r := dim Im(T). The dimension formula [3.1.6]
shows that dim Ker(T) = n � r and part ii of the positive part lemma
shows that Ker(T) = Ker(

p
T? T). Choose an orthonormal basis

u1, u2, . . . , un�r for the linear subspace Ker(
p

T? T) ✓ V. Similarly,
set m := dim W, choose an orthonormal basis w1, w2, . . . , wr for
the linear subspace Im(T) ✓ W, and extend it to an orthonormal
basis w1, w2, . . . , wm of W. Let W

0 := Span(wr+1, wr+2, . . . , wm). By
construction, the linear subspaces W

0 and Im(T) are orthogonal and,
by hypothesis, we have dim W

0 = m � r > n � r = dim Ker(
p

T? T).
The linear map S1 : Ker(

p
T? T) ! W

0 is defined, for all 1 6 j 6 n � r,
by S1[uj] = wr+j. Using the Parseval identity [7.1.5] twice gives

kS1[c1 u1 + c2 u2 + · · ·+ cn�r un�r]k2
W

= kc1 wr+1 + c2 wr+2 + · · ·+ cn�r wnk2
W

= |c1|2 + |c2|2 + · · ·+ |cn�r|2 = kc1 u1 + c2 u2 + · · ·+ cn�r un�rk2
V

.

The nonnegativity [7.0.0] shows that, by taking the square root, we
obtain kS1[u]kW

= kuk
V

for all vectors u in Ker(
p

T? T).
We next focus on Im(

p
T? T). Consider vectors v1 and v2 in V

such that (
p

T? T)[v1] = (
p

T? T)[v2]. Part i of the positive part
lemma and the linearity of the maps give

kT[v1]� T[v2]kW
= kT[v1 � v2]kW

= k(
p

T? T)[v1 � v2]kV
= k(

p
T? T)[v1]� (

p
T? T)[v1]kV

= 0 ,

so the properties [7.1.1] of norms show that T[v1] = T[v2]. Hence,
the linear map S2 : Im(

p
T? T) ! Im(T) defined, for all vectors v

in V, by S2
⇥
(
p

T? T)[v]
⇤
= T[v] is well-defined. Part i of the lemma

also implies that, for all vectors v in Im(
p

T? T), we have kS2[v]kW
=

kvk
V

.
Combining S1 and S2 gives the linear map S : V ! W defined by

S[v] = S1[v0] + S2[v00] where v = v0 + v00, v0 2 Ker(
p

T? T), and
v00 2 Im(

p
T? T). For all vectors v in V, we have

(S
p

T? T)[v] = S
⇥
(
p

T? T)[v]
⇤
= S2

⇥
(
p

T? T)[v]
⇤
= T[v] ,

so T = S
p

T? T. Moreover, the Pythagorean theorem [7.1.2] gives

kS[v]k2 =
��S1[v0] + S2[v00]

��2 =
��S1[v0]

��2 +
��S2[v00]

��2 =
��v0��2 +

��v00��2 = kvk2 ,
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which proves that S is an isometry.

10.3.2 Problem. Find the polar decomposition of A :=

2

4
1 1 1
1 1 �1

�2 1 0

3

5.

Solution. Since A
?
A =

2

4
1 1 �2
1 1 1
1 �1 0

3

5

2

4
1 1 1
1 1 �1

�2 1 0

3

5 =

2

4
6 0 0
0 3 0
0 0 2

3

5, it

follows that
p

A? A =

2

4

p
6 0 0

0
p

3 0
0 0

p
2

3

5 and

S = A(
p

A? A)�1

=

2

4
1 1 1
1 1 �1

�2 1 0

3

5

2

4
1/

p
6 0 0

0 1/
p

3 0
0 0 1/

p
2

3

5

=

2

4
1/

p
6 1/

p
3 1/

p
2

1/
p

6 1/
p

3 �1/
p

2
s � 2/

p
6 1/

p
3 0

3

5 .

10.4 Singular-Value Decomposition
Can we extend the spectral theorems to all linear maps?
To associate a diagonal matrix to every linear map, we need a pair of
ordered bases: one for the source and another for the target.

10.4.0 Definition. Let V and W be finite-dimensional inner product
spaces. The singular values of the linear map T : V ! W are the
eigenvalues of the linear operator

p
T? T : V ! V. Since

p
T? T is the

unique positive-semidefinite square root of T
?

T : V ! V, the singular
values of T are nonnegative real numbers and they are typically
listed in increasing order.

10.4.1 Theorem (Singular-value decomposition). Let V and W be finite-

dimensional inner product spaces such that m := dim W > dim V =: n.

For any linear map T : V ! W with singular values s1, s2, . . . , sn, there

exists an orthonormal basis u1, u2, . . . , un of V and an orthonormal basis

w1, w2, . . . , wm of W such that, for all vectors v in V, we have

T[v] = s1 hv, u1iw1 + s2 hv, u2iw2 + · · ·+ sn hv, uniwn .

Proof. The self-adjoint spectral theorem [10.1.4] establishes that
there exists an orthonormal basis u1, u2, . . . , un of V consisting of
eigenvectors for the self-adjoint linear operator

p
T? T. The polar

decomposition [10.3.1] shows that there exists an isometry S : V ! W

such that T = S
p

T? T. Expressing the vector v in V in terms of
its orthonormal coordinate [7.1.7] and applying linear operator
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T = S
p

T? T, we obtain

T[v] =
�
S

p
T? T

�
[v]

= S
⇥
(
p

T? T)[hv, u1i u1 + hv, u2i u2 + · · ·+ hv, uni un]
⇤

= S
⇥
hv, u1i (

p
T?T)[u1] + hv, u2i (

p
T? T)[u2] + · · ·+ hv, uni (

p
T? T)[un]

⇤

= S[s1 hv, u1i u1 + s2 hv, u2i u2 + · · ·+ sn hv, uni un]

= s1 hv, u1i S[u1] + s2 hv, u2i S[u2] + · · ·+ sn hv, uni S[un] .

The characterizations [9.1.3] of surjective isometries demonstrate
that the vectors S[u1], S[u2], . . . , S[un] form an orthonormal list for W.
For all 1 6 j 6 n, set wj := S[uj]. Extending the orthonormal list
w1, w2, . . . , wn to an orthonormal basis of W completes the proof.

10.4.2 Corollary. Let m and n be positive integers such that m > n. For any

complex (m ⇥ n)-matrix A, there is a factorization A = P S Q
?

where P is a

unitary (m ⇥ m)-matrix, Q is a unitary (n ⇥ n)-matrix, and S is a diagonal

(m ⇥ n)-matrix whose diagonal entries are the singular values of A.

Proof. Combining the singular-value decomposition theorem and the
changes of basis theorem [4.0.2] proves the claim.

10.4.3 Remark. The singular-value decomposition of an (m ⇥ n)-matrix
A, where m > n, can be computed using the following steps.
• Compute a unitary diagonalization of the product A

?
A = Q

? L Q

where Q
?

Q = I, L := diag(l1, l2, . . . , ln), l1 > l2 > · · · > lr > 0,
and lj = 0 for all r + 1 6 j 6 n.

• Consider the invertible (r⇥ r)-matrix D := diag(
p

l1,
p

l2, . . . ,
p

lr)

and let S :=
⇥

D 0

0 0

⇤
be a diagonal (m ⇥ n)-matrix.

• For all 1 6 j 6 r, set wj := 1p
lj

A uj where the vector uj denotes

the j-th column in the matrix Q. Extend the list w1, w2, . . . , wr to
an orthonormal basis of Km. This orthonormal basis determines
the columns of the (m ⇥ m)-matrix P.

10.4.4 Problem. Find a singular-value decomposition of A :=

2

64
1 1
1 �1
1 �1
1 1

3

75.

Solution. Since

A
?

A =


1 1 1 1
1 �1 �1 1

�
2

64
1 1
1 �1
1 �1
1 1

3

75 =


4 0
0 4

�

we have

S =

2

64
2 0
0 2
0 0
0 0

3

75
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and Q = I. Because w1 = 1
2 a1 and w2 = 1

2 a2, we obtain an or-
thonormal basis for R4 by choosing w3 := 1

2
⇥
1 1 �1 �1

⇤
T and

w4 := 1
2
⇥
1 �1 1 �1

⇤
T. Thus, a singular-value decomposition is

A =

0

B@
1
2

2

64
1 1 1 1
1 �1 1 �1
1 �1 �1 1
1 1 �1 �1

3

75

1

CA

2

64
2 0
0 2
0 0
0 0

3

75


1 0
0 1

�
.

10.4.5 Problem. Find a singular value decomposition of

B :=

2

4
1 �1

�2 2
2 �2

3

5 .

Solution. Since

B
?

B =


1 �2 2

�1 2 �2

� 2

4
1 �1

�2 2
2 �2

3

5 =


9 �9

�9 9

�
,

we see the eigenvalues are 18 and 0 with unit eigenvectors given by

the columns of the matrix Q = 1p
2


1 1

�1 1

�
. Hence, we have

S :=


3
p

2 0 0
0 0 0

�T

.

Since we have w1 = 1
3
p

2
A u1 = 1

3
⇥
1 �2 2

⇤
T, we may choose

w2 := 1p
5

⇥
2 1 0

⇤
T and w3 := 1p

45

⇥
�2 4 1

⇤
T. Thus, a singular-value

decomposition is

B =

2

4
1/3 2/

p
5 �2

p
45

�2/3 1/
p

5 4/
p

45
2/3 0 5/

p
45

3

5

2

4
3
p

2 0
0 0
0 0

3

5
 

1p
2


1 1

�1 1

�?!
.

Exercises

10.4.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The singular values of any linear operator on a finite-dimensional
vector space are also eigenvalues of the operator.

ii. The singular values of any matrix A are the eigenvalues of A
?

A.
iii. The singular values of any linear operator are nonnegative.
iv. Every eigenvalue of a self-adjoint matrix A is a singular value of

A.


