## Problem Set #1

Due: 15 September 2011

- 1. There is a useful way of describing the points of the closed interval [a,b]. As usual, we assume that a < b.
  - (a) Consider the interval [0,b], for b>0. Prove that if x lies in [0,b], then we have x=tb for some t with  $0 \le t \le 1$ . What is the significance of the number t? What is the midpoint of the interval [0,b]?
  - (b) Prove that if  $x \in [a,b]$ , then we have x = (1-t)a + tb for some t with  $0 \le t \le 1$ . What is the midpoint of the interval [a,b]? What is the point 1/3 of the way from a to b?
  - (c) Prove conversely that if  $0 \le t \le 1$  then (1-t)a+tb is in [a,b].
- **2.** If X and Y are sets, then the *union*  $X \cup Y$  is the set consisting of all elements that are in either X and Y (or in both X and Y). The *intersection* of X and Y is the set  $X \cap Y$  consisting of all elements that are in both X and Y. The empty set, denoted by  $\emptyset$ , is the set that contains no element.

Describe each of the following subsets of  $\mathbb{R}$  as a union of intervals.

(a) 
$$A = \{x \in \mathbb{R} : x^2 + 4x + 13 < 0\} \cap \{x \in \mathbb{R} : 3x^2 + 5 > 0\}$$

**(b)** 
$$B = \{x \in \mathbb{R} : (x+2)(x-1)(x-5) < 0\} \cap \left\{x \in \mathbb{R} : \frac{3x+1}{x-2} \ge 0\right\}$$

(c) 
$$C = \left\{ x \in \mathbb{R} : \frac{x^2 - 5x + 4}{x^2 - 9} < 0 \right\} \cup \left\{ x \in \mathbb{R} : \sqrt{7x + 1} + x = 17 \right\}$$

- **3.** Let  $x_1, x_2, y_1$ , and  $y_2$  be four real numbers. **(a)** Show that  $(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 + x_2y_2)^2 + (x_1y_2 x_2y_1)^2$ .
  - (b) Prove the Cauchy-Schwarz inequality:

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$$
 (CS)

(c) Deduce that equality holds in (CS) only when  $y_1 = y_2 = 0$  or when there is a number  $\lambda$ such that  $x_1 = \lambda y_1$  and  $x_2 = \lambda y_2$ .