Problem Set #11

Due: Thursday, 24 November 2011

- **1.** For the function $f(x) := \frac{4x^2}{x^2 + 1}$, do the following:
 - (a) Find the horizontal and vertical asymptotes of f(x).
 - **(b)** Find f' and f''.
 - (c) Find the critical points of f.
 - (d) Find any inflection points.
 - (e) Evaluate f at the critical points. Identify global maxima and minima.
 - (f) Sketch f.
- **2.** (a) For $n \in \mathbb{N}$, use induction to show that

$$\sum_{k=1}^{n} k^5 = \frac{2n^6 + 6n^5 + 5n^4 - n^2}{12}.$$

- (**b**) Fix b > 0. Use the definition of the definite integral together with the Riemann partition $P_n := \{(x_k, [x_{k-1}, x_k])\}$, where $x_k := \frac{kb}{n}$ for $0 \le k \le n$, to compute $\int_0^b x^5 dx$.
- **3.** Consider the definite integral $\int_1^2 \frac{1}{t} dt$.
 - (a) By dividing the interval $1 \le t \le 2$ into n equal parts and choosing appropriate sample points, show that

$$\sum_{j=1}^{n} \frac{1}{n+j} < \int_{1}^{2} \frac{1}{t} dt < \sum_{j=0}^{n-1} \frac{1}{n+j}.$$

(b) How large should *n* be to approximate $\int_{1}^{2} \frac{1}{t} dt$ with an error of at most $5 \cdot 10^{-6}$ using one of the sums in part (a)?

Hint. What is the difference between the underestimate and overestimate?