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2.3 Certain Products in ℤ/⟨ℓ⟩
How do multiplicative inverses impact products within modular
arithmetic? The section highlights a few famous formula.

The article, James Joseph Sylvester,
On Certain Ternary Cubic‑Form
Equations, American Journal of
Mathematics 2 (1879) 357–393, created
the word “totient”.

Definition 2.3.0. For any positive integer 𝑚, the totient 𝜙(𝑚) of 𝑚
is the number of positive integers coprime to 𝑚;𝜙(𝑚)∶= ||{𝑛 ∈ ℕ | 1 ⩽ 𝑛 ⩽ 𝑚 and gcd(𝑚,𝑛) = 1}|| .
Remark 2.3.1. For the first few positive integers, the totient is:𝜙(1) = ||{1}|| = 1 𝜙(7) = ||{1, 2, 3, 4, 5, 6}|| = 6𝜙(2) = ||{1}|| = 1 𝜙(8) = ||{1, 2, 3, 4}|| = 4𝜙(3) = ||{1, 2}|| = 2 𝜙(9) = ||{1, 2, 4, 5, 7, 8}|| = 6𝜙(4) = ||{1, 3}|| = 2 𝜙(10) = ||{1, 3, 7, 9}|| = 4𝜙(5) = ||{1, 2, 3, 4}|| = 4 𝜙(11) = ||{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}|| = 10𝜙(6) = ||{1, 5}|| = 2 𝜙(12) = ||{1, 5, 7, 11}|| = 4
Lemma 2.3.2. A positive integer 𝑝 is prime if and only if 𝜙(𝑝) = 𝑝 − 1.

Proof. Let 𝑝 be a positive integer.⇒: Suppose that 𝑝 is prime. By combining Proposition 2.1.4,
Lemma 2.2.2, and Theorem 2.2.4, we see that the integers{1, 2, … , 𝑝 − 1} are all coprime to 𝑝, so 𝜙(𝑝) = 𝑝 − 1.⇐: Suppose that 𝜙(𝑝) = 𝑝 − 1. It follows that the integers{1, 2, … , 𝑝 − 1} are all coprime to 𝑝. Thus, Lemma 2.2.2 and Theo‑
rem 2.2.4 establish that 𝑝 is prime.

Theorem 2.3.3 (Totient). Let ℓ be a positive integer. For any integer 𝑚
coprime to ℓ, we have 𝑚𝜙(ℓ) ≡ 1 mod ℓ.

Leonhard Euler published a proof of
this theorem in 1763.

Proof. Let {𝑛1, 𝑛2, … , 𝑛𝜙(ℓ)} = {𝑛 ∈ ℕ | 1 ⩽ 𝑛 ⩽ ℓ and gcd(𝑛, ℓ) = 1}.
We first claim that the 𝜙(ℓ) congruence classes[𝑚𝑛1]ℓ, [𝑚𝑛2]ℓ, … , [𝑚𝑛𝜙(ℓ)]ℓ
are distinct. Given gcd(𝑚, ℓ) = 1, Lemma 2.2.2 shows that [𝑚]ℓ
has multiplicative inverse in ℤ/⟨ℓ⟩. Hence, for any integers 𝑖 and𝑗 such that 1 ⩽ 𝑖, 𝑗 ⩽ 𝜙(ℓ), we have [𝑚𝑛𝑖]ℓ = [𝑚𝑛𝑗]ℓ if and only
if [𝑛𝑖]ℓ = [𝑛𝑗]ℓ. As 1 ⩽ 𝑛𝑖 < ℓ and 1 ⩽ 𝑛𝑗 < ℓ, Proposition 2.1.4
establishes that [𝑛𝑖]ℓ = [𝑛𝑗]ℓ if and only if 𝑖 = 𝑗.

Since gcd(𝑚𝑛𝑖, ℓ) = 1 for any 1 ⩽ 𝑖 ⩽ 𝜙(ℓ), both[𝑚𝑛1]ℓ, [𝑚𝑛2]ℓ, … , [𝑚𝑛𝜙(ℓ)]ℓ and [𝑛1]ℓ, [𝑛2]ℓ, … , [𝑛𝜙(ℓ)]ℓ
list the same nonzero congruence classes (possibly in a different
order). Thus, we deduce that

[𝑚𝜙(ℓ)]ℓ[𝑛1 𝑛2 ⋯ 𝑛𝜙(ℓ)]ℓ = 𝜙(ℓ)∏𝑗=1[𝑚𝑛𝑖]ℓ = 𝜙(ℓ)∏𝑗=1[𝑛𝑖]ℓ = [𝑛1 𝑛2 ⋯ 𝑛𝜙(ℓ)]ℓ .
Because gcd(𝑛1 𝑛2 ⋯ 𝑛𝜙(ℓ), ℓ) = 1, Lemma 2.2.2 also shows that[𝑛1 𝑛2 ⋯ 𝑛𝜙(ℓ)]ℓ has multiplicative inverse in ℤ/⟨ℓ⟩. It follows that[𝑚𝜙(ℓ)]ℓ = [1]ℓ or 𝑚𝜙(ℓ) ≡ 1 mod ℓ.

When ℓ = 10 and 𝑚 = 7, we have[7(1)]10 = [7]10 , [7(3)]10 = [1]10 ,[7(7)]10 = [9]10 , [7(9)]10 = [3]10 .
It follows that[74]10 [1(3)(7)(9)]10 = [1(3)(7)(9)]10 .
Since [1(3)(7)(9)]10 = [9]10 and[9]210 = [1]10, multiplying both sides
by [9]10, we obtain [74]10 = [1]10.
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Problem 2.3.4. Simplify 21001 mod 15.

Proof. We can apply the Totient Theorem because gcd(2, 15) = 1.
The integers 𝑛 satisfying 1 ⩽ 𝑛 ⩽ 15 and gcd(𝑛, 15) = 1 are{1, 2, 4, 7, 8, 11, 13, 14}, so 𝜙(15) = 8. Since 28 ≡ 1 mod 15 and1001 = 125(8) + 1, we obtain21001 ≡ 2125(8)+1 ≡ (28)125(2) ≡ 1(2) ≡ 2 mod 15 .

The following special case is better known.

Corollary 2.3.5 (Fermat’s Little Theorem). Let 𝑝be a positive prime
integer. For any integer 𝑚, we have [𝑚]𝑝𝑝 = [𝑚]𝑝. Equivalently, for any
integer 𝑚 that is not divisible by 𝑝, we have 𝑚𝑝−1 ≡ 1 mod 𝑝.

Pierre de Fermat stated this result in a
letter dated October 18, 1640.

Proof. When 𝑚 ≡ 0 mod 𝑝, we have [𝑚]𝑝𝑝 = [0]𝑝 = [𝑚]𝑝, so
we may assume that 𝑚 is not divisible by 𝑝. Since 𝑝 is positive
prime, Theorem 2.2.4 shows that gcd(𝑚, 𝑝) = 1 and Lemma 2.3.2
establishes that 𝜙(𝑝) = 𝑝 − 1. Hence, the Totient Theorem 2.3.3
yields 𝑚𝑝−1 ≡ 1 mod 𝑝.

Lemma 2.3.6. Let 𝑝 be a positive prime integer. For any integer 𝑚
satisfying 𝑚2 ≡ 1 mod 𝑝, we have 𝑚≡±1 mod 𝑝.

Proof. The hypothesis 𝑚2 ≡ 1 mod 𝑝 implies that𝑚2 − 1 = (𝑚− 1)(𝑚+ 1) ≡ 0 mod 𝑝 .
From the definition of a prime, we deduce that 𝑚−1≡0 mod 𝑝 or𝑚+ 1 ≡ 0 mod 𝑝.

Theorem 2.3.7 (Wilson). For any positive prime integer 𝑝, we have(𝑝 − 1)! ≡ −1 mod 𝑝.
This theorem was stated by Ibn
al‑Haytham circa 1000 and by John
Wilson around 1770. It seems that
Joseph‑Louis Lagrange gave the first
proof in 1771.

Proof. By Theorem 2.2.4, each element in the set {1, 2, … , 𝑝 − 1} has
a unique multiplicative inverse in ℤ/⟨𝑝⟩. From Lemma 2.3.6, we
see that the only elements 𝑚 in this set for which [𝑚]2𝑝 = [1]𝑝 are 1
and 𝑝 − 1. Since the product of any element and its multiplicative
inverse is [1]𝑝, the only two number that contribute to the product
are 1 and 𝑝 − 1. It follows that(𝑝 − 1)! ≡ (1)(2)(3)⋯(𝑝 − 1) ≡ (1)(𝑝 − 1) ≡ 𝑝 − 1 mod 𝑝 .
Remark 2.3.8. For small primes, we illustrate the partnering in
the proof of the Wilson Theorem:1 ≡ 1 mod 22! ≡ (1)(2) ≡ 2 mod 34! ≡ (1)((2)(3))(4) ≡ 4 mod 56! ≡ (1)((2)(4))((3)(5))(6) ≡ 4 mod 710! ≡ (1)((2)(6))((3)(4))((5)(9))((7)(8))(10) ≡ 10 mod 1112! ≡ (1)((2)(7))((3)(9))((4)(10))((5)(8))((6)(11))(12) ≡ 12 mod 1317! ≡ (1)((2)(9))((3)(6))((4)(13))((5)(7))((8)(15))((10)(12))((11)(14))(16) ≡ 16 mod 17
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Exercises

Problem 2.3.9. Demonstrate that the equation 𝑥6 + 𝑦12 = 703 has
no integer solutions.

Problem 2.3.10. Let ℓ be a reducible integer such that ℓ > 4.
Verify that (ℓ − 1)! ≡ 0 mod ℓ.

Problem 2.3.11. Let 𝑝 be a positive prime integer having the form𝑝 = 2𝑘 + 1 for some integer 𝑘. Prove that (𝑘!)2 ≡ (−1)𝑘+1 mod 𝑝.



3 Rings Copyright © 2023, Gregory G. Smith
Last Updated: 29 January 2023

Rings were originally devised as a common generalization for
algebraic structures in number theory, invariant theory, and the
study of polynomial equations. Their conceptualization began in
1870s and culminated in 1920s.

David Hilbert introduced the word
“ring” (more precisely “number ring”
or “Zahlring”) into mathematics.
Rather than a ‘hollow circular object’,
think of a network or organization
acting to further their own interests
such as a criminal ring or spy ring, or
an enclosed space such as a circus ring
or boxing ring.

3.0 Rings: mostly commutative

What algebraic structure unites the integers and polynomials?

Definition 3.0.0. A ring 𝑅 is a nonempty set with two binary
operations, called addition and multiplication, such that, for any
elements 𝑎, 𝑏, and 𝑐, we have the following properties:

Contrary to some antiquated sources,
rings always have a multiplicative
identity 1. A compelling argument for
this convention is provided in Bjorn
Poonen, Why All Rings Should Have
a 1, Mathematics Magazine 92 (2019)
58–62.

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (associativity of addition)𝑎 + 𝑏 = 𝑏+ 𝑎 (commutativity of addition)𝑎 + 0 = 𝑎 (existence of additive identity)𝑎 + (−𝑎) = 0 (existence of additive inverses)𝑎 (𝑏 𝑐) = (𝑎𝑏) 𝑐 (associativity of multiplication)1𝑎 = 𝑎1 = 𝑎 (existence of multiplicative identity)𝑎 (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 (distributivity)(𝑎 + 𝑏) 𝑐 = 𝑎𝑐 + 𝑏𝑐
The ring 𝑅 is commutative if it has the additional property:𝑎𝑏 = 𝑏𝑎 (commutativity of multiplication)

Example 3.0.1. The set ℕ of nonnegative integers is not a ring
under the usual operations. It satisfies all of the commutative ring
axioms except for the existence of additive inverses.

Example 3.0.2. Sets of numbers including ℤ, ℚ, ℝ, and ℂ are all
commutative rings under the usual addition and multiplication.

Example 3.0.3. For any nonnegative integer ℓ, the quotient ℤ/⟨ℓ⟩
is a commutative ring where addition and multiplication are
inherited from the set ℤ of integers.

We enumerate the basic properties of rings.

Proposition 3.0.4. Let 𝑅 be a ring.
(i) For any element 𝑎 in 𝑅, we have 0𝑎 = 𝑎0 = 0.

(ii) Every element in 𝑅 has a unique additive inverse.
(iii) Given the additive inverse −𝑎 of 𝑎 ∈ 𝑅, we have (−1)(−𝑎) = 𝑎.
(iv) There is a unique additive identity 0.
(v) There is a unique multiplicative identity 1.

Proof. Let 𝑎 be an element in the ring 𝑅.
(i) The additive identity and distributivity properties imply that0𝑎 = (0 + 0)𝑎 = 0𝑎 + 0𝑎. Adding the additive inverse−0𝑎 to both sides gives 0𝑎 = 0. Similarly, the equalities𝑎0 = 𝑎(0 + 0) = 𝑎0 + 𝑎0 imply that 0𝑎 = 0.
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(ii) Suppose that 𝑏 and 𝑐 are additive inverses of 𝑎. Using addi‑
tive identity, additive inverse, associativity of addition abd
commutativity of addition gives𝑏 = 𝑏 + 0 = 𝑏+ (𝑎 + 𝑐) = (𝑏 + 𝑎) + 𝑐= (𝑎 + 𝑏) + 𝑐 = 0 + 𝑐 = 𝑐 + 0 = 𝑐 .

(iii) The additive inverse and distributivity properties imply that0 = (−1 + 1)(−𝑎) = (−1)(−𝑎) + (−𝑎). Adding 𝑎 to both
sides, the additive inverse and additive identity properties
give (−1)(−𝑎) = 𝑎.

(iv) Suppose 0 and 0′ are both additive identities in 𝑅. The ad‑
ditive identity property and commutative of addition give0 = 0 + 0′ = 0′ + 0 = 0′.

(v) Suppose 1 and 1′ are both multiplicative identities in 𝑅. The
multiplicative identity property gives 1 = 1 1′ = 1′.

Example 3.0.5. Suppose that 𝑅 is a ring with 1 = 0. For any
element 𝑎 in 𝑅, we have 𝑎 = 1𝑎 = 0𝑎 = 0, so 𝑅 consists of a single
element. This is called the zero ring.

Example 3.0.6. Let 𝑅 be a commutative ring. For any two positive
integers 𝑚 and 𝑛, the set M𝑚,𝑛(𝑅) of all (𝑚 × 𝑛)‑matrices with
entries in 𝑅 forms a ring. It is non‑commutative when 𝑚𝑛 > 1. For
instance, when 𝑚 = 𝑛 = 2, we have[0 10 0] [0 01 0] = [1 00 0] ≠ [0 00 1] = [0 01 0] [0 10 0] .
Definition 3.0.7. Polynomials in the indeterminate (or variable) 𝑥
with coefficients in a commutative ring 𝑅 form the commutative
ring 𝑅[𝑥]. The polynomials 𝑓 and 𝑔 in 𝑅[𝑥] have the form𝑓∶= 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎0 and𝑔∶= 𝑏𝑛 𝑥𝑛 + 𝑏𝑛−1 𝑥𝑛−1 +⋯+ 𝑏0
where 𝑚 and 𝑛 are nonnegative integers and the coefficients𝑎𝑚, 𝑎𝑚−1, … , 𝑎0, 𝑏𝑛, 𝑏𝑛−1, … , 𝑏0 are elements in 𝑅.

The word ’polynomial’ first appears
in English in 1696 in Arithmetic by
Samuel Jeake. The original meaning
was just an expression consisting of
many terms.

Addition in 𝑅[𝑥] is defined by𝑓 + 𝑔 = (𝑎𝑛 + 𝑏𝑛)𝑥𝑛 + (𝑎𝑛−1 + 𝑏𝑛−1) 𝑥𝑛−1 +⋯+ (𝑎0 + 𝑏0) .
Associativity of addition, commutativity of addition, and the ex‑
istence of an additive identity and additive inverse are inherited
from the corresponding properties in the coefficient ring 𝑅.

By including terms in 𝑓 or 𝑔 with 0 as
the coefficient, we may assume that𝑛 ⩾ 𝑚.

Multiplication in 𝑅[𝑥] is defined by𝑓𝑔 = (𝑎𝑛 𝑏𝑚)𝑥𝑛+𝑚 + (𝑎𝑛 𝑏𝑚−1 + 𝑎𝑛−1 𝑏𝑚)𝑥𝑛+𝑚−1 +⋯+ 𝑎0 𝑏0 ;
the coefficient of the monomial 𝑥𝑖 is ∑𝑖𝑗=0 𝑎𝑖−𝑗 𝑏𝑗 ∈ 𝑅. Associativ‑
ity of multiplication, the existence of a multiplicative identity, and
commutativity of multiplication, depend on distributivity in 𝑅 as
well as the corresponding property in 𝑅. Distributivity in 𝑅[𝑥] just
relies on the corresponding property in 𝑅.
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Exercises

Problem 3.0.8. Let 𝒳 be a set. The power set P(𝒳) of 𝒳 consists of
all subsets of 𝒳. For any two sets 𝒜 and ℬ in P(𝒳), the symmetric
difference is 𝒜△ℬ∶= (𝒜 ⧵ ℬ) ∪ (ℬ ⧵ 𝒜) = (𝒜 ∪ ℬ) ⧵ (𝒜 ∩ ℬ).

Determine whether the set P(𝒳) with addition and multiplica‑
tion defined, for all subsets 𝒜 and ℬ of 𝒳, by𝒜⨹ℬ∶= 𝒜△ℬ and 𝒜⨻ℬ∶= 𝒜 ∩ ℬ ,
forms a commutative ring. If it is not, then list all of the defining
axioms that fail to hold.

Problem 3.0.9. Determine whether the set ℝ ∪ {∞} with addition
and multiplication defined, for all 𝑥 and 𝑦 in ℝ ∪ {∞}, by𝑥⊞ 𝑦∶= min(𝑥, 𝑦) and 𝑥⊠ 𝑦∶= 𝑥+ 𝑦 ,
forms a commutative ring. If it is not, then list all of the defining
axioms that fail to hold.

3.1 Examples of Rings

How do we get new rings from old ones? Functions with values in
a ring produce new rings.

Example 3.1.0. Let 𝑅 be a ring and let 𝒳 be a nonempty set. The
set of maps from 𝒳 to 𝑅 equipped with the pointwise addition and
multiplication is itself a ring. For all functions 𝑓, 𝑔∶𝒳→𝑅, we have(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) and (𝑓 𝑔)(𝑥) = 𝑓(𝑥) 𝑔(𝑥). The constant
function 𝑥 ↦ 0𝑅 is the additive identity and the constant function𝑥 ↦ 1𝑅 is the multiplicative identity. When 𝑅 is commutative, the
ring of functions is also commutative.

Many “ring‑like” structures without
a multiplicative identity do occur,
especially in analysis. Focusing on
functions with compact support or
using convolution as the product are
natural examples.

A substructure is one of the most basic ideas in algebra.

Definition 3.1.1. A subset 𝑆 of a ring 𝑅 is a subring if restricting
the addition and multiplication on 𝑅 to 𝑆 produces a ring on 𝑆
with the same additive and multiplicative identities.

Proposition 3.1.2. A nonempty subset 𝑆 of a ring 𝑅 is a subring if and
only if the following three properties hold.⦁ For any two elements 𝑓 and 𝑔 in 𝑆, the element 𝑓 − 𝑔 is also in 𝑆.⦁ For any two elements 𝑓 and 𝑔 in 𝑆, the element 𝑓𝑔 is also in 𝑆.⦁ The multiplicative identity 1𝑅 is also in 𝑆.

Proof. Let 𝑓, 𝑔, and ℎ be elements in 𝑆.⇒: Suppose that 𝑆 is a subring of 𝑅. Each element 𝑔 in 𝑆 has an
additive inverse −𝑔 and the sum 𝑓−𝑔 of the two elements 𝑓 and−𝑔 in 𝑆 is also in 𝑆. The product 𝑓𝑔 of two elements 𝑓 and 𝑔 in𝑆 is also in 𝑆. Finally, the subring 𝑆 has the same multiplicative
identity as 𝑅, so 1𝑅 belongs to 𝑆.
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⇐: Suppose that 𝑆 satisfies the three properties. Since associa‑
tivity of addition, commutativity of addition, associativity of
multiplication, and distributivity are inherited directly from the
ring 𝑅, the binary operations on 𝑆 induces a ring structure if
and only if the following five conditions are satisfied:
(closure of addition) For any 𝑓 and 𝑔 in 𝑆, the sum 𝑓 + 𝑔 is in 𝑆.
(additive identity) The additive identity 0𝑅 is in 𝑆.
(additive inverses) For any 𝑓 in 𝑆, the additive inverse −𝑓 ∈ 𝑆.
(closure of multiplication) For any 𝑓, 𝑔 ∈ 𝑆, we have 𝑓𝑔 ∈ 𝑆.
(multiplicative identity) The multiplicative identity 1𝑅 is in 𝑆.
Since 𝑆 is nonempty, there exists 𝑓 ∈ 𝑆 and the first property
implies that 0𝑅 = 𝑓 − 𝑓 ∈ 𝑆. For any 𝑔 in 𝑆, the first property
establishes that −𝑔 = 0𝑅 − 𝑔 ∈ 𝑆. For any 𝑓 and 𝑔 in 𝑆, we have−𝑔 ∈ 𝑆 and the first property gives 𝑓 + 𝑔 = 𝑓 − (−𝑔) ∈ 𝑆. Thus,
the first property establishes the first 3 conditions. Finally, the
last two properties are the last two conditions.

Example 3.1.3. The inclusions ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ are all subrings.
Every subring of the integers ℤ or the quotient ℤ/⟨ℓ⟩ contains 1
and hence must be equal to the whole ring.

Example 3.1.4. The subset ℤ[i]∶= {𝑎+𝑏 i ∈ ℂ ∣ 𝑎, 𝑏 ∈ ℤ} ⊂ ℂ forms
a subring called the Gaussian integers.

Problem 3.1.5. Draw the multiples of the Gaussian integer 1 + 2 i.

Solution. Since arctan(2) ≈ 1.1071487… , we see that1 + 2 i = √5(cos(1.1071487) + i sin(1.071487)) .
It follows that multiples of 1 + 2 i are obtained by scaling the
Gaussian integers by √5 and rotating them counterclockwise
by 1.07187… radians. The larger black circles in Figure 3.1 are the
multiplies of 1 + 2 i.

Figure 3.1: Multiples of the
Gaussian integer 1 + 2 i
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Definition 3.1.6. The characteristic of a ring 𝑅 is the smallest
positive integer 𝑛 such that𝑛1𝑅 = 1𝑅 + 1𝑅 +⋯+ 1𝑅⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟𝑛 times

= 0𝑅 ;
if no such positive integer exists, then the characteristic is 0.

For 0 ∈ ℤ, we always have 0 1𝑅 = 0𝑅 .
It follows that, for any ring 𝑅 of
characteristic 𝑛, we have 𝑛1𝑅 = 0𝑅 .

Example 3.1.7. The rings ℤ, ℚ, ℝ, and ℂ are all of characteristic
zero. For any positive integer ℓ, the characteristic of the quotient
ring ℤ/⟨ℓ⟩ is ℓ.

Problem 3.1.8. When 𝑅 has characteristic 𝑛, prove that, for any
ring element 𝑎 in 𝑅, we have 𝑛𝑎 = 0
Proof. For any ring element 𝑎 in 𝑅, the multiplicative identity, the
associativity of multiplication, and the definition of characteristic
give 𝑛𝑎 = 𝑛(1𝑅 𝑎) = (𝑛 1𝑅) 𝑎 = 0𝑅 𝑎 = 0.

Exercises

Problem 3.1.9. Let 𝑅 be a commutative ring and let 𝑛 be a nonneg‑
ative integer. For any ring elements 𝑎 and 𝑏 in 𝑅, prove that

(𝑎 + 𝑏)𝑛 = 𝑛∑𝑘=0(𝑛𝑘)𝑎𝑘 𝑏𝑛−𝑘 .
Problem 3.1.10. Let 𝔽4 denote the subset of all (2 × 2)‑matrices
having the form [𝑎 𝑏𝑏 𝑎 + 𝑏]
where 𝑎 and 𝑏 are ring elements in the quotient ℤ/⟨2⟩.

(i) Demonstrate that 𝔽4 is a subring of the ring formed by all(2 × 2)‑matrices with entries in the quotient ℤ/⟨2⟩.
(ii) Verify that 𝔽4 is a commutative ring.

(iii) Show that any nonzero element in 𝔽4 has a multiplicative
inverse.


