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After fields, domains are the most common form of rings. In fact,
certain domains best capture the features of our favourite rings:
the ring ℤ of integers and the ring 𝕂[𝑥] of univariate polynomials
with coefficients in a field 𝕂.

8.0 Recognizing Domains

How do we identify domains among all commutative rings? We
first characterize domains via subrings.

Proposition 8.0.0. Every commutative domain is isomorphic to a
subring of a field.

Proof. Let 𝑅 be a commutative domain and set 𝐷 ∶= 𝑅 ⧵ {0𝑅} to
be the subset of nonzero elements in 𝑅. Since 𝑅 is a domain, the
subset 𝐷 is multiplicative: the product of two nonzero elements in𝑅 is also nonzero. Theorem 7.0.2 shows that any nonzero fraction𝑟/𝑑 in the ring 𝑅[𝐷−1] of fractions is a unit, so 𝑅[𝐷−1] is a field.
Theorem 7.0.2 also provides the canonical ring homomorphism𝜂∶ 𝑅 → 𝑅[𝐷−1] such that, for any nonzero element 𝑑 in 𝐷, the
image 𝜂(𝑑) = 𝑑/1 is a unit in 𝑅[𝐷−1]. It follows that Ker(𝜂) = ⟨0𝑅⟩
and the map 𝜂 is injective. We conclude that 𝑅 is isomorphic to
the subring 𝜂(𝑅) in 𝑅[𝐷−1].
Example 8.0.1. The ring ℤ of integers is a domain and the field ℚ
of rational numbers is its field of fractions.

Example 8.0.2. The ring 𝕂[𝑥] of univariate polynomials with
coefficients in the field 𝕂 is a domain. The field𝕂(𝑥)∶= {𝑓𝑔 || 𝑓, 𝑔 ∈ 𝕂[𝑥] and 𝑔 ≠ 0}
of rational functions is its field of fractions.

Problem 8.0.3. Show that the ring ℚ[i] ∶= {𝑎 + 𝑏 i | 𝑎, 𝑏 ∈ ℚ}
of Gaussian rationals is the field of fractions for the ring ℤ[i] of
Gaussian integers.

Solution. As a subring of the field ℂ of complex numbers, we see
that ℤ[i] is a domain. Every element in the field of factions for ℤ[i]
can be expressed in the form𝑎 + 𝑏 i𝑐 + 𝑑 i = (𝑎 + 𝑏 i)(𝑐 − 𝑑 i)(𝑐 + 𝑑 i)(𝑐 − 𝑑 i)= (𝑎 𝑐 + 𝑏𝑑) − (𝑎𝑑 − 𝑏𝑐) i𝑐2 + 𝑑2 = (𝑎 𝑐 + 𝑏𝑑𝑐2 + 𝑑2 ) + (𝑏 𝑐 − 𝑎𝑑𝑐2 + 𝑑2 ) i ∈ ℚ[i]
for some integers 𝑎, 𝑏, 𝑐, and 𝑑 such that (𝑐, 𝑑) ≠ (0, 0).

As with fields, we determine when a quotient ring is a domain.
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Theorem 8.0.4. For any commutative ring 𝑅 and any ideal 𝐼 in 𝑅, the
following are equivalent:
(a) The quotient ring 𝑅/𝐼 is a domain.
(b) We have 𝐼 ≠ ⟨1𝑅⟩ = 𝑅 and the product 𝑓𝑔 being in ideal 𝐼 implies

that 𝑓 is in 𝐼 or 𝑔 is in 𝐼.
Compare with Definition 1.2.7.

(c) The ideal 𝐼 is the kernel of a ring homomorphism of 𝑅 to a field.

Proof.
(a) ⇔ (b): The quotient ring 𝑅/𝐼 is not the zero ring if and only

if 𝐼 ≠ ⟨1𝑅⟩ = 𝑅. For any elements 𝑓 and 𝑔 in the ring 𝑅, the
product 𝑓𝑔 is in 𝐼 if and only if the coset 𝑓𝑔+ 𝐼 = (𝑓+ 𝐼)(𝑔+ 𝐼)
equals 0 + 𝐼 in the quotient ring 𝑅/𝐼. Hence, the quotient ring𝑅/𝐼 is a domain if and only if 𝐼 ≠ ⟨1𝑅⟩ = 𝑅 and, the membership𝑓𝑔 ∈ 𝐼 implies that 𝑓 + 𝐼 = 0 + 𝐼 or 𝑔 + 𝐼 = 0 + 𝐼 in 𝑅/𝐼 or
equivalently that 𝑓 ∈ 𝐼 or 𝑔 ∈ 𝐼.

(a) ⇒ (c): Suppose that the quotient ring 𝑅/𝐼 is a domain. The
canonical surjection 𝜋∶𝑅→𝑅/𝐼 is a ring homomorphism and
the canonical ring homomorphism 𝜂 from the domain 𝑅/𝐼 into
its field of fractions is injective. Hence, the ideal 𝐼 is the kernel
of the composite map 𝜂𝜑.

(c) ⇒ (a): Suppose that the ideal 𝐼 is the kernel of a ring homomor‑
phism from 𝑅 into a field. The First Isomorphism Theorem 6.1.1
implies that the quotient ring 𝑅/𝐼 is isomorphic to a subring of
the field. Since every subring of a domain is a domain, we see
that the quotient ring 𝑅/𝐼 is a domain.

Definition 8.0.5. An ideal 𝐼 in commutative ring 𝑅 is prime if it
satisfies the equivalent conditions in Theorem 8.0.4.

Example 8.0.6. Every maximal ideal 𝐼 in a commutative ring 𝑅 is
prime because the quotient ring 𝑅/𝐼 is a field.

Example 8.0.7. The zero ideal ⟨0⟩ in a domain 𝑅 is prime because
the quotient ring 𝑅/⟨0⟩ ≅ 𝑅 is a domain.

Example 8.0.8. The prime ideals in the ring ℤ of integers are
the principal ideals generated by nonnegative prime integers
(including the zero ideal).

Proposition 8.0.9. For any prime ideal 𝑃 in a commutative ring 𝑅, the
subset 𝐷∶= 𝑅 ⧵ 𝑃 is multiplicative and the ring 𝑅[𝐷−1] of fractions has
a unique maximal ideal.

Proof. Since 𝑃 is prime, we have 𝑅 = ⟨1𝑅⟩ ≠ 𝑃 and 1𝑅 ∈ 𝐷. More‑
over, the product of two elements in 𝑅 belongs to 𝑃 if and only if
one of the factors belongs to the ideal 𝑃, so the product of any two
elements in 𝐷 is also in the subset 𝐷. Thus, the subset 𝐷 = 𝑅 ⧵ 𝑃
is multiplicative.

Consider the subset 𝑃[𝐷−1] ∶= {𝑞/𝑒 ∈ 𝑅[𝐷−1] | 𝑞 ∈ 𝑃 and 𝑒 ∈ 𝐷}
in the ring 𝑅[𝐷−1]. For any elements 𝑝 and 𝑞 in 𝑃, any element 𝑟 in
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𝑅, and any elements 𝑑 and 𝑒 in 𝐷, we have 𝑝 𝑒 + 𝑞𝑑 ∈ 𝑃, 𝑟 𝑞 ∈ 𝑃,𝑑 𝑒 ∈ 𝐷, 𝑝𝑑 + 𝑞𝑒 = 𝑝𝑒+𝑞𝑑𝑑 𝑒 ∈ 𝑃[𝐷−1], and ( 𝑟𝑑 )( 𝑞𝑒 ) = 𝑟𝑝𝑑 𝑒 ∈ 𝑃[𝐷−1],
so 𝑃[𝐷−1] is an ideal in 𝑅[𝐷−1]. By construction, any fraction𝑟/𝑑 where 𝑟 ∈ 𝐷 = 𝑅 ⧵ 𝑃 is a unit in 𝑅[𝐷−1]. Hence, the only
ideal containing a fraction not belonging to 𝑃[𝐷−1] is the ideal⟨1𝑅[𝐷−1]⟩ = 𝑅[𝐷−1]. We conclude that the ideal 𝑃[𝐷−1] is the
unique maximal ideal in the ring 𝑅[𝐷−1].
Proposition 8.0.10. Let 𝜑∶𝑅→𝑆 be a ring homomorphism between
commutative rings. For any prime ideal 𝐽 in the ring 𝑆, the preimage𝜑−1(𝐽)∶= {𝑟 ∈ 𝑅 | 𝜑(𝑟) ∈ 𝐽} is a prime ideal in the ring 𝑅.

Proof. The Correspondence Theorem 6.2.0 demonstrates that
the preimage 𝐼 ∶= 𝜑−1(𝐽) is an ideal in the ring 𝑅. As 𝜑(𝐼) = 𝐽,
the Induced Map Lemma 6.1.0 establishes that the induce map𝜑∶𝑅/𝐼→𝑅/𝐽 is well‑defined ring homomorphism. Since𝜑(𝑟 + 𝐼) = 𝜑(𝑟) + 𝐽 = 0 + 𝐽 ⇔ 𝜑(𝑟) ∈ 𝐽 ⇔ 𝑟 ∈ 𝜑−1(𝐽) = 𝐼
we see that Ker(𝜑) = ⟨0𝑅/𝐼⟩. The First Isomorphism Theorem 6.1.1
thereby shows that the quotient ring 𝑅/𝐼 is isomorphic to a sub‑
ring of the domain 𝑅 / 𝐽. Since every subring of a domain is a
domain, we see that the quotient ring 𝑅/𝐼 is a domain.

Exercises

Problem 8.0.11. Consider the subringsℤ[√5]∶= {𝑎 + 𝑏√5 || 𝑎, 𝑏 ∈ ℤ} andℤ[1+√52 ]∶= {𝑎 + 𝑏 (1+√52 ) || 𝑎, 𝑏 ∈ ℤ}
of the field ℝ of real numbers. For each subring, describe the
elements in the field of fractions. Are these two fields the same? Is
one contained in the other?

8.1 Euclidean Domains

Which rings have division with remainder? We naively start with
the following declaration.

Definition 8.1.0. Let 𝑅 be a commutative domain. A Euclidean
function on 𝑅 is a function 𝜈∶𝑅 ⧵ {0}→ℕ such that, for any element𝑓 in 𝑅 and any element 𝑔 in 𝑅⧵{0}, there exists elements 𝑞 and 𝑟 in𝑅 such that 𝑓 = 𝑞𝑔 + 𝑟 and either 𝑟 = 0 or 𝜈(𝑟) < 𝜈(𝑔). A Euclidean
domain is a commutative domain which can be endowed with at
least one Euclidean function.

A particular Euclidean function is not
part of the definition of a Euclidean
domain, as in general a Euclidean
domain may admit many different
Euclidean functions.

Remark 8.1.1. The defining property for a Euclidean function
is equivalent to the following assertion: for any nonzero ideal𝐼 = ⟨𝑔⟩ in 𝑅, every nonzero coset in the quotient ring 𝑅/𝐼 has a
representative 𝑟 such that 𝜈(𝑟) < 𝜈(𝑔).
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Example 8.1.2. Theorem 1.1.2 shows that the ring ℤ of integers is
a Euclidean domain with the Euclidean function 𝜈∶ ℤ ⧵ {0} → ℕ
defined by 𝜈(𝑚)∶= |𝑚| for all nonzero integers 𝑚.

Example 8.1.3. Theorem 4.0.4 establishes that, for any field 𝕂, the
univariate polynomial ring 𝕂[𝑥] is a Euclidean domain with the
Euclidean function 𝜈∶𝕂[𝑥] ⧵ {0}→ℕ defined by 𝜈(𝑓) ∶= deg(𝑓) for
all nonzero polynomials 𝑓.

Problem 8.1.4. Verify that any field 𝕂 is a Euclidean domain with
the Euclidean function 𝜈∶𝕂 ⧵ {0} → ℕ defined by 𝜈(𝑘) = 1 for all
nonzero elements 𝑘 in 𝕂.

Solution. Let 𝑢 be a nonzero element in 𝕂. For any element 𝑘 in 𝕂,
we have 𝑘 = (𝑘𝑢−1) 𝑢 + 0.

In this pathological case, the
remainder is always zero.

Problem 8.1.5. Confirm that the ring ℤ[i] of Gaussian integers is
a Euclidean domain with the Euclidean function 𝜈∶ℤ[i] ⧵ {0} →ℕ
defined by 𝜈(𝑎 + 𝑏 i)∶= 𝑎2 + 𝑏2.

Geometric Solution. The elements of ℤ[i] form a square lattice in
the complex plane. For any element 𝑧 in ℤ[i], the ideal ⟨𝑧⟩ forms a
similar lattice: writing 𝑧 = 𝑟 𝑒i𝜃 where 𝑟 ∈ ℝ and 𝜃 ∈ [0, 2𝜋), the
lattice corresponding to ⟨𝑧⟩ is obtained by rotating through the an‑
gle 𝜃 followed by stretching by the factor 𝑟 = |𝑧|. For any complex
number 𝑤, there is at least one point of the lattice correspond‑
ing to ⟨𝑧⟩ whose square distance from 𝑤 is at most 12 |𝑧|2 = 12𝑟2.
Let 𝑞𝑧 be that closed point and set 𝑝 ∶= 𝑤 − 𝑞𝑧. It follows that|𝑝|2 ⩽ 12 |𝑧|2 < |𝑧|2 as required. Since there may be more than one
choice for 𝑞𝑧, this division with remainder is not unique.

𝑟𝑟
√22 𝑟

Figure 8.1: Nearest Gaussian
integer in ideal

Algebraic Solution. Divide the complex number 𝑤 by the complex
number 𝑧; there is a complex number 𝑐 = 𝑥 + 𝑦 i where 𝑥, 𝑦 ∈ ℝ
such that 𝑤 = 𝑐𝑧. Choose a nearest Gaussian integer 𝑎 + 𝑏 i, so𝑥 ∶= 𝑎 + 𝑥0 and 𝑦 ∶= 𝑏 + 𝑦0 where 𝑎, 𝑏 ∈ ℤ and −12 ⩽ 𝑥0, 𝑦0 < 12 .
The product (𝑎 + 𝑏 i) 𝑧 is the required point in ⟨𝑧⟩ because we have|𝑥0 + 𝑦0 i|2 < 12 and ||𝑤 − (𝑎 + 𝑏 i) 𝑧||2 = ||𝑧 (𝑥0 + 𝑦0 i)||2 < 12 |𝑧|2.

We extend greatest common divisors to commutative domains
in the most obvious way; compare with Definition 1.1.4.

Definition 8.1.6. Let 𝑓 and 𝑔 be nonzero elements in a commuta‑
tive domain 𝑅. An element 𝑑 in 𝑅 is a greatest common divisor of 𝑓
and 𝑔, denoted by gcd(𝑓, 𝑔), if⦁ the element 𝑑 divides both 𝑓 and 𝑔, and⦁ any element 𝑒 in 𝑅, that divides both 𝑓 and 𝑔, also divides 𝑑.
Two ring elements are coprime if 1 is a greatest common divisor.

A greatest common divisor may not exist. Moreover, when a
greatest common divisor exists, it may not be unique.
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Example 8.1.7. Consider the domain𝑅∶= ℤ[√−5] = {𝑎 + 𝑏√−5 || 𝑎, 𝑏 ∈ ℤ} ⊂ ℂ
Observe that 9 = (3)(3) = (2+√−5)(2−√−5). Both 3 and 2+√−5
divide 9, but neither divides the other. Hence, the ring elements 9
and 6 + 3√−5 do not have a greatest common divisor in 𝑅.

Example 8.1.8. In any field, every nonzero element is a greatest
common divisor for any pair of nonzero elements.

Lemma 8.1.9. Let 𝑓 and 𝑔 be nonzero elements in commutative do‑
main 𝑅. Assume that the element 𝑑 in 𝑅 is a greatest common divisor
for 𝑓 and 𝑔. A ring element 𝑒 in 𝑅 is also a greatest common divisor for𝑓 and 𝑔 if and only if there exists a unit 𝑢 in 𝑅 such that 𝑒 = 𝑢𝑑.

When 𝑅 = ℤ, we typically impose
uniqueness by requiring the greatest
common divisor to be positive. When𝕂 is field and 𝑅 = 𝕂[𝑥], we force
uniqueness by requiring the greatest
common divisor to be monic.

Proof.⇒: Suppose that 𝑒 = gcd(𝑓, 𝑔). Since 𝑒 divides 𝑓 and 𝑔, it follows
that 𝑒 divides 𝑑. Similarly, 𝑑 divides 𝑓 and 𝑔, so 𝑑 divides 𝑒.
Hence, there exists elements 𝑢 and 𝑣 in 𝑅 such that 𝑑 = 𝑢𝑒 and𝑒 = 𝑣𝑑. It follows that 𝑑 = 𝑢𝑒 = 𝑢𝑣𝑑. As 𝑅 is a domain, we
deduce that 1 = 𝑢𝑣.⇐: Suppose there is a unit 𝑢 such that 𝑒 = 𝑢𝑑. Since 𝑑 divides 𝑓,
there exists an element 𝑥 in 𝑅 such that 𝑓 = 𝑥𝑑 = 𝑥𝑢𝑒, so 𝑒
divides 𝑓. By symmetry, we see that 𝑒 divides 𝑔. Assume that 𝑐
divides 𝑓 and 𝑔. Since 𝑑 is a greatest common divisor for 𝑓 and𝑔, there exists an element 𝑤 in 𝑅 such that 𝑑 = 𝑤𝑐, so 𝑒 = 𝑢𝑤𝑐.
Thus, 𝑒 is also a greatest common divisor for 𝑓 and 𝑔.

As with integers, greatest common divisors are computable in a
Euclidean domain.

Algorithm 8.1.10 (Euclidean Algorithm).
Input: Elements 𝑓 and 𝑔 in a Euclidean domain 𝑅.
Output: A greatest common divisor of 𝑓 and 𝑔.
If 𝑔 = 0 then return 𝑓.
Find 𝑞 and 𝑟 such that 𝑓 = 𝑞𝑔 + 𝑟 where 𝜈(𝑓) < 𝜈(𝑔) or 𝑟 = 0.
Return gcd(𝑔, 𝑟).
Proof of Correctness. It suffices to show that, when 𝑓 = 𝑞𝑔 + 𝑟 and𝑟 ≠ 0, there exists a unit 𝑢 in 𝑅 such that gcd(𝑓, 𝑔) = 𝑢 gcd(𝑔, 𝑟).
Let 𝑑 be a greatest common divisor of 𝑓 and 𝑔, and let 𝑒 be a great‑
est common divisor of 𝑔 and 𝑟. Since 𝑑 divides 𝑓 and 𝑔, the ring
element 𝑑 also divides 𝑟 = 𝑓 − 𝑞𝑔, so 𝑒 divides 𝑑. Similarly, the
ring element 𝑒 divides 𝑓 = 𝑞𝑔 + 𝑟, so 𝑑 divides 𝑒. Hence, there ex‑
ists ring elements 𝑢 and 𝑣 such that 𝑑 = 𝑢𝑒 and 𝑒 = 𝑣𝑑. It follows
that 𝑑 = 𝑢𝑒 = 𝑢𝑣𝑑. As 𝑅 is domain, we deduced that 1 = 𝑢𝑣.

The algorithm terminates after finitely many iterations because𝜈(𝑟) < 𝜈(𝑔) and Im(𝜈) ⊆ ℕ.

Problem 8.1.11. Find the greatest common divisor of 𝑥6 − 1 and𝑥4 − 1 in ℚ[𝑥].
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Solution. The Euclidean Algorithm yields𝑥2𝑥4 − 1 𝑥6+ 0𝑥5+ 0𝑥4+ 0𝑥3+ 0𝑥2+ 0𝑥− 1𝑥6+ 0𝑥5+ 0𝑥4+ 0𝑥3+ 𝑥2𝑥2+ 0𝑥− 1 𝑥2+ 0𝑥+ 1𝑥4+0𝑥3+ 0𝑥2+ 0𝑥− 1𝑥4+ 0𝑥3− 𝑥2𝑥2+ 0𝑥− 1𝑥2+ 0𝑥− 10
so gcd(𝑥6 − 1, 𝑥4 − 1) = 𝑥2 − 1.

Problem 8.1.12. Find a greatest common divisor for 10 and 4 + 3 i
in the ring ℤ[i] of Gaussian integers.

Solution. The Euclidean Algorithm yields10 = (2 − i)(4 + 3 i) + (−1 − 2 i)4 + 3 i = (−2 − i)(−1 − 2 i) + 0
so gcd(10, 4 + 3 i) = −1 − 2 i.

4+3 i

(−i)(4+3 i)

(1−i)(4+3 i)

(2−i)(4+3 i)

(1−2 i)(4+3 i)

10

Figure 8.2: Gaussian division with
remainder

Exercises

Problem 8.1.13. Let 𝜔∶= 12(−1 + √3 i) ∈ ℂ be one of the complex
roots of the polynomial 𝑥2 +𝑥+1 ∈ ℂ[𝑥]. Prove that the commuta‑
tive domain ℤ[𝜔]∶= {𝑎 + 𝑏𝜔 || 𝑎, 𝑏 ∈ ℤ} ⊂ ℂ is a Euclidean domain
with the function 𝜈∶ℤ[𝜔]→ℕ is defined by 𝜈(𝑎+𝑏𝜔) = 𝑎2−𝑎𝑏+𝑏2.

8.2 Extended Euclidean Algorithm

How can we improve on the Euclidean Algorithm? We want to
write a greatest common divisor as a linear combination.

Algorithm 8.2.0 (Extended Euclidean Algorithm).
Input: Elements 𝑓 and 𝑔 in a Euclidean domain 𝑅.
Output: Elements 𝑑, 𝑠, 𝑡 ∈ 𝑅 such that 𝑠𝑓 + 𝑡𝑔 = 𝑑 = gcd(𝑓, 𝑔).
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Set (𝑑0, 𝑑1, 𝑠0, 𝑠1, 𝑡0, 𝑡1)∶= (𝑓, 𝑔, 1, 0, 0, 1).
While 𝑑1 ≠ 0 do

Find 𝑞, 𝑟 ∈ 𝑅 such that 𝑑0 = 𝑞𝑑1 + 𝑟 and 𝜈(𝑟) < 𝜈(𝑑1).
Set (𝑑0, 𝑑1, 𝑠0, 𝑠1, 𝑡0, 𝑡1)∶= (𝑑1, 𝑑0 − 𝑞𝑑1, 𝑠1, 𝑠0 − 𝑞 𝑠1, 𝑡1, 𝑡0 − 𝑞 𝑡1).

Return (𝑑0, 𝑠0, 𝑡0).
Proof of Correctness. The remainders 𝑟 produce a decreasing se‑
quence 𝜈(𝑟) of nonnegative integers, so eventually a remainder
will be zero. Thus, the while loop must terminate.

Since gcd(𝑑0, 𝑑1) = gcd(𝑑1, 𝑟) = gcd(𝑑1, 𝑑0 − 𝑞𝑑1), it suffices
to show that the equations 𝑑0 = 𝑠0 𝑓 + 𝑡0 𝑔 and 𝑑1 = 𝑠1 𝑓 + 𝑡1 𝑔
hold throughout the calculation. We verify these equalities for the
initial conditions and each repetition of the loop:𝑠0 𝑓 + 𝑡0 𝑔 ↭ 1(𝑓) + 0(𝑔) = 𝑓 ↭ 𝑑0 ,𝑠0 𝑓 + 𝑡0 𝑔 ↭ 𝑠1 𝑓 + 𝑡1 𝑔 = 𝑑1 ↭ 𝑑0 ,𝑠1 𝑓 + 𝑡1 𝑔 ↭ 0(𝑓) + (1)(𝑔) = 𝑔 ↭ 𝑑1 ,𝑠1 𝑓 + 𝑡1 𝑔 ↭ (𝑠0 − 𝑞 𝑠1)(𝑓) + (𝑡0 − 𝑞 𝑡1)(𝑔)= (𝑠0 𝑓 + 𝑡0 𝑔) − 𝑞(𝑠1 𝑓 + 𝑡1 𝑔) = 𝑑0 − 𝑞𝑑1 ↭ 𝑑1 .
Problem 8.2.1. In ℤ, express gcd(1254, 1110) as an integer linear
combination of 1254 and 1110.

Solution. Since we have1254 = (1)(1110) + 144 102 = (2)(42) + 181110 = (7)(144) + 102 42 = (2)(18) + 6144 = (1)(102) + 42 18 = (3)(6) + 0 ,
the Extended Euclidean Algorithm 8.2.0 gives(54)(1254) + (−61)(1110) = 6 = gcd(1254, 1110) .

𝑑0 𝑑1 𝑠0 𝑠1 𝑡0 𝑡1 𝑞1254 1110 1 0 0 1 11110 144 0 1 1 −1 7144 102 1 −7 −1 8 1102 42 −7 8 8 −9 242 18 8 −23 −9 26 218 6 −23 54 26 −61 36 0 54 −185 −61 209

Table 8.1: Values of the local
variables when using
Algorihm 8.2.0 to compute
gcd(1254, 1110)

Problem 8.2.2. In 𝔽3[𝑥], express gcd(𝑥3 + 2𝑥2 + 2, 𝑥2 + 2𝑥 + 1) as
an 𝔽3[𝑥]‑linear combination of 𝑥3 + 2𝑥2 + 2 and 𝑥2 + 2𝑥 + 1.

Solution. Since we have𝑥3 + 2𝑥2 + 2 = (𝑥)(𝑥2 + 2𝑥 + 1) + (𝑥 − 1)𝑥2 + 2𝑥 + 1 = (𝑥)(𝑥 − 1) + (−1)𝑥 − 1(−𝑥 + 1)(−1) + 0 ,
the Extended Euclidean Algorithm 8.2.0 gives(1)(𝑥3 + 2𝑥2 + 2) + (2𝑥)(𝑥2 + 2𝑥 + 1) = 2𝑥 + 2 = gcd(𝑓, 𝑔) .
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𝑑0 𝑑1 𝑠0 𝑠1 𝑡0 𝑡1 𝑞𝑥3 + 2𝑥2 + 2 𝑥2 + 2𝑥 + 1 1 0 0 1 𝑥𝑥2 + 2𝑥 + 1 2𝑥 + 2 0 1 1 2𝑥 2𝑥 + 22𝑥 + 2 0 1 𝑥 + 1 2𝑥 2𝑥2 + 2𝑥 + 1
Table 8.2: Values of the local
variables when using
Algorithm 8.2.0 to compute
gcd(𝑥3 + 2𝑥2 + 2, 𝑥2 + 2𝑥 + 1)

The Extended Euclidean Algorithm 8.2.0 leads to an effective
version of Sun Zi’s Remainder Theorem 6.3.6.

Algorithm 8.2.3 (Effective Remainder Theorem).
Input: Pairwise coprime elements 𝑔1, 𝑔2, … , 𝑔𝑛 and

elements 𝑓1, 𝑓2, … , 𝑓𝑛 in a Euclidean domain 𝑅.
Output: An element 𝑓 ∈ 𝑅 such that, for any 1 ⩽ 𝑗 ⩽ 𝑛,

we have 𝑓 + ⟨𝑔𝑗⟩ = 𝑓𝑗 + ⟨𝑔𝑗⟩ in 𝑅/⟨𝑔𝑗⟩.
Set (𝑗, 𝑔, 𝑓)∶= (2, 𝑔1, 𝑓1).
While 𝑗 ⩽ 𝑛 do

Find 𝑠, 𝑡 ∈ 𝑅 such that 𝑠 𝑔 + 𝑡𝑔𝑗 = 1.
Compute 𝑞, 𝑟 ∈ 𝑅, such that (𝑠 𝑔𝑓𝑗 + 𝑡 𝑔𝑗 𝑓) = 𝑞(𝑔𝑔𝑗) + 𝑟

and 𝜈(𝑟) < 𝜈(𝑔𝑔𝑗) or 𝑟 = 0.
Set (𝑗, 𝑔, 𝑓)∶= (𝑗 + 1, 𝑔 𝑔𝑗, 𝑟).

Return 𝑓.

Proof of Correctness. For each repetition of the loop, we show that𝑓 + ⟨𝑔𝑘⟩ = 𝑓𝑘 + ⟨𝑔𝑘⟩ for all 1 ⩽ 𝑘 ⩽ 𝑗. Before the loop, we have𝑓 = 𝑓1, so 𝑓 + ⟨𝑔1⟩ = 𝑓 + ⟨𝑔1⟩ in 𝑅/⟨𝑔𝑗⟩. At the 𝑗‑th iteration of
the loop, we have 𝑔 = 𝑔1𝑔2⋯𝑔𝑗−1, so gcd(𝑔, 𝑔𝑗) = 1. Given that𝑠 𝑔+𝑡𝑔𝑗 = 1, we see that (𝑠 𝑔𝑓𝑗 + 𝑡𝑔𝑗𝑓)+ ⟨𝑔𝑘⟩ = 𝑓+ ⟨𝑔𝑘⟩ = 𝑓𝑘 + ⟨𝑔𝑘⟩
in 𝑅/⟨𝑔𝑘⟩ for any 1 ⩽ 𝑘 ⩽ 𝑗 − 1 and (𝑠 𝑔𝑓𝑗 + 𝑡𝑔𝑗𝑓) + ⟨𝑔𝑗⟩ = 𝑓𝑗 + ⟨𝑔𝑗⟩
in 𝑅/⟨𝑔𝑗⟩. Since (𝑠 𝑔𝑓𝑗 + 𝑡 𝑔𝑗 𝑓) = 𝑞(𝑔𝑔𝑗) + 𝑟 in 𝑅/⟨𝑔𝑘⟩, we deduce
that 𝑟 + ⟨𝑔𝑘⟩ = 𝑓𝑘 + ⟨𝑔𝑘⟩ for any 1 ⩽ 𝑘 ⩽ 𝑗.

Problem 8.2.4. Find an integer 𝑚 such that 𝑚 ≡ 7 mod 11 and𝑚≡ 5 mod 17.

Solution. The first iteration in the Effective Remainder Algo‑
rithm 8.2.3 gives (−3)(11) + (2)(17) = 1 and(−3)(11)(5) + (2)(17)(7) = 73 = (0)(187) + (73) .
We confirm that 73 = (6)(11) + 7 and 73 = (4)(17) + 5, so integer73 meets the requirements.

Problem 8.2.5. Find a polynomial 𝑓 in 𝔽5[𝑥] such that𝑓 + ⟨𝑥⟩ = 1 + ⟨𝑥⟩ in 𝔽5[𝑥]/⟨𝑥⟩,𝑓 + ⟨𝑥 + 2⟩ = 3 + ⟨𝑥 + 2⟩ in 𝔽5[𝑥]/⟨𝑥 + 2⟩, and𝑓 + ⟨𝑥2 + 𝑥 + 2⟩ = (𝑥 + 1) + ⟨𝑥2 + 𝑥 + 2⟩ in 𝔽5[𝑥]/⟨𝑥2 + 𝑥 + 2⟩.
Solution. The first iteration in the Effective Remainder Algo‑
rithm 8.2.3 gives (2)(𝑥) + (3)(𝑥 + 2) = 1 and(2)(𝑥)(3) + (3)(𝑥 + 2)(1) = 4𝑥 + 1 = (0)(𝑥2 + 2𝑥) + (4𝑥 + 1) .
The second iteration gives(3 𝑥 + 4)(𝑥2 + 2𝑥) + (2𝑥 + 3)(𝑥2 + 𝑥 + 2) = 1(3𝑥 + 4)(𝑥2 + 2𝑥)(𝑥 + 1) + (2𝑥 + 3)(𝑥2 + 𝑥 + 2)(4𝑥 + 1) = 𝑥4 + 𝑥2 + 4𝑥 + 1= (1)(𝑥4 + 3𝑥2 + 4𝑥2 + 4𝑥) + (2𝑥3 + 2𝑥2 + 1) .



Copyright © 2023 by Gregory G. Smith Domains 83

Finally, we verify that2𝑥3 + 2𝑥2 + 1 = (2𝑥2 + 2𝑥)(𝑥) + 1 ,2𝑥3 + 2𝑥2 + 1 = (2𝑥2 + 3𝑥 + 4)(𝑥 + 2) + 3 ,2𝑥3 + 2𝑥2 + 1 = (2𝑥)(𝑥2 + 𝑥 + 2) + (𝑥 + 1) .
Therefore, the desired polynomial is 2𝑥3 + 2𝑥2 + 1.

Exercises

Problem 8.2.6. Let 𝔽2 ∶= ℤ/⟨2⟩ be the field with two elements.
Find a polynomial 𝑓 in 𝔽2[𝑥] such that𝑓 + ⟨𝑥⟩ = 1 + ⟨𝑥⟩ in 𝔽2[𝑥]/⟨𝑥⟩,𝑓 + ⟨𝑥⟩ = (𝑥 + 1) + ⟨𝑥2 + 𝑥 + 1⟩ in 𝔽2[𝑥]/⟨𝑥2 + 𝑥 + 1⟩,𝑓 + ⟨𝑥4 + 𝑥3 + 1⟩ = (𝑥3 + 𝑥 + 1) + ⟨𝑥4 + 𝑥3 + 1⟩ in 𝔽2[𝑥]/⟨𝑥4 + 𝑥3 + 1⟩.


