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Beyond division with remainder, there are a couple features that
distinguish the archetypal rings ℤ and 𝕂[𝑥] from other domains.
We present a hierarchy of commutative rings that includes com‑
mutative domains, unique factorization domains, principal ideal
domains, Euclidean domains, and fields.

9.0 Principal Ideal Domains

What are the simplest ideals? We consider a kind of ring having
only uncomplicated ideals.

Definition 9.0.0. A principal ideal domain is a commutative domain
in which every ideal is generated by a single element. A principal
ideal is any ideal generated by a single ring element.

Division with remainder leads to principal ideals.

Theorem 9.0.1. Every Euclidean domain is a principal ideal domain.

Proof. Let 𝐼 be an ideal in a Euclidean domain 𝑅 with Euclidean
function 𝜈∶𝑅 ⧵ {0}→ℕ. When 𝐼 = ⟨0⟩, the ideal 𝐼 is principal, so we
may assume 𝐼 ≠ ⟨0⟩. By the Well‑Ordering 0.2.6 of the nonnegative
integers, the set {𝜈(𝑓) ∈ ℕ || 𝑓 ∈ 𝐼 ⧵ {0}} has a minimum, say 𝑚.
Choose an element 𝑔 in the ideal 𝐼 with 𝜈(𝑔) = 𝑚. As 𝑔 ∈ 𝐼, we
have ⟨𝑔⟩ ⊆ 𝐼. For any element 𝑓 in 𝐼, there exists elements 𝑞 and 𝑟
in the Euclidean domain 𝑅 such that 𝑓 = 𝑞𝑔 + 𝑟 and either 𝑟 = 0
or 𝜈(𝑟) < 𝜈(𝑔). Since 𝑟 = 𝑓 − 𝑞𝑔 ∈ 𝐼, our choice of 𝑔 implies that𝑟 = 0. We deduce that 𝑓 = 𝑞𝑔 and 𝐼 ⊆ ⟨𝑔⟩. Thus, we conclude that𝐼 = ⟨𝑔⟩.
Remark 9.0.2. Theorem 1.1.2, Theorem 4.0.4, and Problem 8.1.5
show that the ring ℤ of integers, the ring 𝕂[𝑥] of univariate poly‑
nomials over the field 𝕂, and the ring ℤ[i] of the Gaussian integers
are Euclidean domains, so these rings are principal ideal domains.

Many commutative domains are not principal ideal domains.

Problem 9.0.3. Show that the ideal ⟨2, 𝑥⟩ in ℤ[𝑥] is not principal.

Solution. Suppose that there exists an element 𝑔 in ℤ[𝑥] such that⟨𝑔⟩ = ⟨2, 𝑥⟩. It would follow that 𝑓𝑔 = 2 for some polynomial 𝑓
in ℤ[𝑥]. Since deg(𝑔) + deg(𝑓) = deg(2) = 0, we would deduce
that 𝑔 is an integer. We would thereby obtain 𝑔 = {±1,±2} because2 is a prime integer. Because ⟨2, 𝑥⟩ is a maximal ideal in ℤ[𝑥], the
element 𝑔 cannot be a unit, so 𝑔 = ±2. However, we would also
have 𝑥 ∈ ⟨𝑔⟩, so 𝑥 = 2ℎ for some polynomial ℎ in ℤ[𝑥] which yields
contradiction by mapping to (ℤ/⟨2⟩)[𝑥].
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Problem 9.0.4. Demonstrate that the ideal ⟨2, 1 − √−3⟩ in ℤ[√−3]
(which is a subring of the field ℂ) is not principal.

Solution. Suppose that there exists integers 𝑎 and 𝑏 such that⟨𝑎 + 𝑏√−3⟩ = ⟨2, 1 − √−3⟩. It follows that 𝑓 (𝑎 + 𝑏√−3) = 2
for some element 𝑓 in ℤ[√−3]. Taking absolute values in ℂ gives|𝑓| (𝑎2 + 3𝑏2) = 2, so 𝑎2 + 3𝑏2 ∈ {±1,±2}. Because 𝑎 and 𝑏 integers,
we must have 𝑎 = ±1 and 𝑏 = 0 which contradicts the fact that⟨2, 1 − √−3⟩ is a maximal ideal.

In a principal ideal domain, the sum of two principal ideals is
generated by a greatest common divisor.

Theorem 9.0.5. Let 𝑅 be a principal ideal domain. For any nonzero
elements 𝑓 and 𝑔 in 𝑅, there exists elements 𝑟 and 𝑠 in 𝑅 such that
gcd(𝑓, 𝑔) = 𝑟𝑓 + 𝑠𝑔. In particular, we have ⟨gcd(𝑓, 𝑔)⟩ = ⟨𝑓, 𝑔⟩.

A domain in which a greatest
common divisor of every pair of
nonzero elements is a linear
combination of the two elements is a
Bézout domain.

Proof. Set 𝐼 ∶= ⟨𝑓, 𝑔⟩. Since 𝑅 is a principal ideal domain, there is
a element 𝑑 in 𝑅 such that 𝐼 = ⟨𝑑⟩. It follows that 𝑑 = 𝑟𝑓 + 𝑠𝑔
for some elements 𝑟 and 𝑠 in 𝑅. Both 𝑓 and 𝑔 are in 𝐼 and 𝐼 is
generated by 𝑑, so 𝑑 divides 𝑓 and 𝑔. On the other hand, if an
element 𝑐 in 𝑅 divides 𝑓 and 𝑔, then 𝑐 divides 𝑟 𝑓 + 𝑠𝑔 = 𝑑. Hence,
we see that 𝑑 = gcd(𝑓, 𝑔).

Any generator for the ideal ⟨𝑓, 𝑔⟩ is a greatest common divisor
of 𝑓 and 𝑔. Lemma 8.1.9 shows that, for any two greatest common
divisors 𝑑 and 𝑒, there exists a unit 𝑢 in 𝑅 such that 𝑒 = 𝑢𝑑 and𝑑 = 𝑢−1 𝑒. Thus, we have ⟨𝑒⟩ ⊆ ⟨𝑑⟩ and ⟨𝑑⟩ ⊆ ⟨𝑒⟩, so ⟨𝑑⟩ = ⟨𝑒⟩.

We extend the concept of irreducibility to elements in any com‑
mutative ring; compare with Definition 1.2.4.

Definition 9.0.6. A ring element 𝑓 is irreducible if 𝑓 is nonzero, 𝑓
is not a unit, and the equation 𝑓 = 𝑔ℎ implies that 𝑔 or ℎ is a unit.

Example 9.0.7. The finite ring ℤ/⟨6⟩ has no irreducible elements
because (ℤ/ ⟨6⟩)× = {1, 5}, 2 = (2)(4), 3 = (3)(3), and 4 = (2)(2).
Without irreducibles, an element may have many factorizations:4 = (2)(2) = (2)(2)(2)(2) = (2)(2)(2)(2)(2)(2) = ⋯ .

Lemma 9.0.8. Let 𝑅 be a commutative domain. For any prime ideal ⟨𝑔⟩
in 𝑅, the ring element 𝑔 is irreducible.

Proof. Suppose that 𝑔 = 𝑓ℎ. Since the principal ideal ⟨𝑔⟩ is prime,
Theorem 8.0.4 shows that the element 𝑔 divides 𝑓 or ℎ. We may
assume that 𝑔 divides 𝑓 and there exists an element 𝑞 in 𝑅 such
that 𝑔𝑓 = 𝑞𝑔. It follows that 𝑔 = 𝑓ℎ = 𝑞𝑔ℎ. Since 𝑅 is a domain,
we deduce that 1 = 𝑞ℎ, so ℎ is a unit and 𝑔 is irreducible.

Example 9.0.9. Consider the subring ℂ[𝑥2, 𝑥3] ⊂ ℂ[𝑥]. Comparing
degrees, we see that the elements 𝑥2 and 𝑥3 are irreducible. They
are not prime because 𝑥2 divides (𝑥3)2 = 𝑥6 but 𝑥2 does not divide𝑥3 and 𝑥3 divides 𝑥4 𝑥2 = 𝑥6 but 𝑥3 does not divide either 𝑥4 or 𝑥2.
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Problem 9.0.10. Demonstrate that 2 ∈ ℤ[√−3] is irreducible but
the ideal ⟨2⟩ is not prime.

Solution. Suppose 2 = (𝑎 + 𝑏√−3)(𝑐 + 𝑑√−3)) for some integers𝑎, 𝑏, 𝑐, and 𝑑. Taking conjugates gives 2 = (𝑎 − 𝑏√−3)(𝑐 − 𝑑√−3).
Multiplying these equations gives 4 = (𝑎2 + 3𝑏2)(𝑐2 + 3𝑑2). Since
the equation 𝑥2 + 3𝑦2 = 2 has no integral solutions, it follows that𝑎2 + 3𝑏2 = 1, so 𝑎 = ±1 and 𝑏 = 0. Since 2 (𝑝 + 𝑞√−3) = 1 has
no integral solutions, the ring element 2 is not a unit. We see that2 is irreducible. To see that 2 is not prime, observe that 2 divides4 = (1 + √−3)(1 − √−3), but 2 does not divide either factor.

Proposition 9.0.11. Let 𝑅 be a principal ideal domain. For any element𝑓 in 𝑅, the following are equivalent:
(a) The element 𝑓 in 𝑅 is irreducible.
(b) The principal ideal ⟨𝑓⟩ is nonzero and maximal.
(c) The principal ideal ⟨𝑓⟩ is nonzero and prime.

Proof.
(a) ⇒(b): Suppose that we have the inclusion ⟨𝑓⟩ ⊆ ⟨𝑔⟩ for some

element 𝑔 in 𝑅. Equivalently, there exists an element 𝑞 in 𝑅
such that 𝑓 = 𝑞𝑔. Since 𝑓 is irreducible, either 𝑔 or 𝑞 is a unit,
so ⟨𝑓⟩ = ⟨𝑔⟩ or ⟨𝑔⟩ = ⟨1⟩ = 𝑅. Because every ideal is prinicipal,
we deduce that ⟨𝑓⟩ is maximal.

(b) ⇒(c): Every nonzero maximal ideal is a nonzero prime ideal.
(c) ⇒(a): Follows from Lemma 9.0.8.

Exercises

Problem 9.0.12. Consider the subringℤ[√−5]∶= {𝑎 + 𝑏√−5 || 𝑎, 𝑏 ∈ ℤ}
of field ℂ of complex numbers

(i) Show that the norm function N∶ ℤ[√−5] → ℤ defined by
N(𝑎 + 𝑏√−5) = 𝑎2 + 5𝑏2 is compatible with multiplication,
meaning that the norm of a product is equal to the product
of the norms of the factors.

(ii) Confirm that 2 + √−5 is an irreducible element in ℤ[√−5].
(iii) Verify that the ideal ⟨2 + √−5⟩ is not prime in ℤ[√−5].
9.1 Unique Factorization Domains

When can we factor ring elements? We propose a class of rings in
which every element has a unique factorization.

Definition 9.1.0. A commutative domain 𝑅 is a unique factorization
domain if, for nonzero element 𝑓 in 𝑅, there exists a unit 𝑢 in 𝑅,
finitely many distinct irreducible elements 𝑔1, 𝑔2, … , 𝑔𝑚 in 𝑅, and
positive integers 𝑒1, 𝑒2, … , 𝑒𝑚 such that𝑓 = 𝑢𝑔𝑒11 𝑔𝑒22 ⋯𝑔𝑒𝑚𝑚 = 𝑢 𝑚∏𝑗=1 𝑔𝑒𝑗𝑗 ,
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and this factorization is unique up to reordering the factors.

Remark 9.1.1. The Fundamental Theorem of Arithmetic 1.2.10
shows that the ring ℤ of integers is a unique factorization domain.

Being a unique factorization domains requires the converse of
Lemma 9.0.8 to hold.

Proposition 9.1.2. Let 𝑅 be a commutative domain in which every
nonzero nonunit is a product of irreducibles. The ring 𝑅 is a unique
factorization domain if and only if, for any irreducible element 𝑓 in 𝑅,
the principal ideal ⟨𝑓⟩ is prime.

Proof. We prove each implication separately.⇒: Suppose that the ring 𝑅 is a unique factorization domain. For
any elements 𝑔 and ℎ in 𝑅 such that the product 𝑔ℎ belongs to
the principal ideal ⟨𝑓⟩, there exists an element 𝑞 in 𝑅 such that𝑔ℎ = 𝑞𝑓. Factor 𝑔, ℎ, and 𝑞 into irreducibles. Uniqueness of the
factorizations implies that the irreducible 𝑢𝑓, for some unit 𝑢
in 𝑅, appears on the left side. This element arose as a factor of
either 𝑔 or ℎ, so we see that 𝑔 ∈ ⟨𝑓⟩ or ℎ ∈ ⟨𝑓⟩. Theorem 8.0.4
shows the principal ideal ⟨𝑓⟩ is prime.⇐: Suppose that any principal ideal generated by an irreducible
element is prime. Consider two factorizations𝑔1 𝑔2 ⋯ 𝑔𝑚 = ℎ1 ℎ2 ⋯ ℎ𝑛
where the elements 𝑔𝑗 in 𝑅 and ℎ𝑘 in 𝑅 are irreducible for all1 ⩽ 𝑗 ⩽ 𝑚 and 1 ⩽ 𝑘 ⩽ 𝑛. We proceed, by induction on
max(𝑚,𝑛), to show that 𝑚 = 𝑛 and 𝑔𝑗 = 𝑐𝑗 ℎ𝜎(𝑗) for some units𝑐𝑗 in 𝑅 and some permutation 𝜎 of the set [𝑚] ∶= {1, 2, … ,𝑚}.
The base case max(𝑚,𝑛) = 1 has 𝑔1 = ℎ1 and the claim is
trivial. For the inductive step, the given equation shows that 𝑔𝑚
divides ℎ1 ℎ2 ⋯ ℎ𝑛. By hypothesis, the principal ideal ⟨𝑔𝑚⟩ is
prime, so there exists an index 𝑘 such that 1 ⩽ 𝑘 ⩽ 𝑛 and 𝑔𝑚
divides ℎ𝑘. Since ℎ𝑘 is irreducible, there exists a unit 𝑐𝑘 such
that 𝑔𝑚 = 𝑐𝑘 ℎ𝑘. Canceling the element 𝑔1 from both sides
yields 𝑔1 𝑔2 ⋯𝑔𝑚−1 = 𝑐𝑘 ℎ1 ℎ2 ⋯ ℎ𝑘−1 ℎ𝑘+1 ⋯ ℎ𝑛. The induction
hypothesis establishes that 𝑚− 1 = 𝑛 − 1 and 𝑔𝑗 = 𝑐𝑗 ℎ𝜎′(𝑗) for
some units 𝑐𝑗 in 𝑅, for all 2 ⩽ 𝑗 ⩽ 𝑚 − 1, and some bijection 𝜎′
from {1, 2, … ,𝑚−1} to {1, 2, … , 𝑘−1, 𝑘+1,𝑚}. Setting 𝜎(𝑗) = 𝜎′(𝑗)
if 𝑗 ≠ 𝑚 and 𝜎(𝑚) = 𝑘 yields the required permutation.

To demonstrate that every principal ideal domain is a unique
factorization domain, we must show that every nonzero nonunit is
a product of irreducibles.

Lemma 9.1.3. Let 𝑅 be a commutative domain. For any nonzero
nonunit 𝑓 in 𝑅 that does not admit a factorization into irreducibles,
there is a proper inclusion ⟨𝑓⟩ ⊂ ⟨𝑔⟩ of principal ideals in 𝑅 where the el‑
ement 𝑔 is another nonzero nonunit that does not admit a factorization
into irreducibles.
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Proof. By hypothesis, the element 𝑓 is not irreducible. Hence,
there are nonzero nonunits 𝑔 and ℎ such that 𝑓 = 𝑔ℎ. If both 𝑔
and ℎ admitted factorizations into irreducibles, then 𝑓 also would.
We may assume that the element 𝑔 does not admit a factorization
into irreducibles. Since ℎ is not a unit, the inclusion ⟨𝑓⟩ ⊂ ⟨𝑔⟩ of
principal ideals is proper.

Theorem 9.1.4. Every nonzero nonunit in any principal ideal domain
is a product of irreducibles.

The assertion is vacuous in a field.

Proof. Let 𝑅 be a principal ideal domain. Suppose that there exists
a nonzero nonunit 𝑓0 in 𝑅 that does not admit a factorization into
irreducibles. Lemma 9.1.3 gives a strict inclusion ⟨𝑓0⟩ ⊂ ⟨𝑓1⟩ where𝑓1 is a nonzero nonunit that does not admit a factorization into
irreducibles. Iterating this step produces an infinite increasing
chain ⟨𝑓0⟩ ⊂ ⟨𝑓1⟩ ⊂ ⟨𝑓2⟩ ⊂ ⋯ of principal ideals in 𝑅. We claim that
this is impossible.

Suppose that the principal ideal domain 𝑅 contains an infinite
increasing chain 𝐼0⊂𝐼1⊂𝐼2⊂⋯ of ideal. Set 𝐼 ∶= ⋃𝑗∈ℕ 𝐼𝑗. The union𝐼 is an ideal: every finite set of elements in 𝐼 lies in a common 𝐼𝑗,
so 𝐼 is closed under addition and multiplication by elements from𝑅 because 𝐼𝑗 has these properties. Since 𝑅 is a principal ideal
domain, there exists an element 𝑔 in 𝑅 such that 𝐼 = ⟨𝑔⟩. The
set 𝐼 is a union, so the element 𝑔 belongs to 𝐼𝑘 for some index 𝑘.
It follows that 𝐼 = ⟨𝑔⟩ ⊂ 𝐼𝑘 ⊆ 𝐼 and 𝐼𝑘 = 𝐼. However, this is
impossible because the inclusion 𝐼𝑘+1 ⊂ 𝐼 = 𝐼𝑘 is proper. We
conclude that every nonzero nonunit in 𝑅 admits a factorization
into irreducibles.

Emmy Noether pioneered the
ascending chain condition, which
asserts that no infinite increasing
chain of ideal exists. Rings that satisfy
this condition are known as noetherian
rings. The second paragraph in the
proof of Theorem 9.1.4 shows that
every principal ideal domain is
noetherian.

Corollary 9.1.5. Any principal ideal domain is a unique factorization
domain.

Proof. Combine Proposition 9.1.2, Proposition 9.0.11 and Theo‑
rem 9.1.4.

Exercises

Problem 9.1.6. Let 𝑅 be a principal ideal domain. For any two
distinct nonzero elements 𝑓 and 𝑔 with no common irreducible
factor, prove that ⟨𝑓⟩ + ⟨𝑔⟩ = ⟨1⟩.
Problem 9.1.7. Let 𝑅 be a unique factorization domain such that
the sum of two principal ideals in 𝑅 is again a principal ideal.
Prove that 𝑅 is a principal ideal domain.

9.2 Non‑Euclidean Principal Ideal Domains

How close is a principal ideal domain to being Euclidean? These
two classes of commutative domains are distinct but the differ‑
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ence is surprisingly small. We start by demonstrating that a prin‑
cipal ideal domain is “just” a Euclidean domain with more general
notion of a Euclidean function.

Definition 9.2.0. Let 𝑅 be a commutative domain. A Dedekind–
Hasse function is a function 𝛿∶𝑅 ⧵ {0}→ℕ such that, for all nonzero
element 𝑓 and 𝑔 in 𝑅, either 𝑔 divides 𝑓 or there exists elements 𝑠
and 𝑡 in 𝑅 such that 𝛿(𝑠𝑓 + 𝑡𝑔) < 𝛿(𝑔).
Remark 9.2.1. Any Euclidean function 𝜈∶𝑅 ⧵ {0}→ℕ is a Dedekind–
Hasse function with (𝑠, 𝑡) = (1,−𝑞) and 𝑓 − 𝑞𝑔 = 𝑟.

Proposition 9.2.2. A commutative domain is a principal ideal domain
if and only if it possesses a Dedekind–Hasse function.

Proof. Let 𝑅 be a commutative domain. We establish the two
implications separately.⇒: Suppose that 𝑅 has a Dedekind–Hasse function 𝛿∶𝑅 ⧵ {0}→ℕ

and let 𝐼 be a nonzero ideal. By the Well‑Ordering 0.2.6 of the
nonnegative integers, the set {𝛿(𝑓) ∈ ℕ || 𝑓 ∈ 𝐼 ⧵ {0}} has
a minimum, say 𝑚. Choose an element 𝑔 in the ideal 𝐼 with𝛿(𝑔) = 𝑚. As 𝑔 ∈ 𝐼, we have ⟨𝑔⟩ ⊆ 𝐼. Consider an element 𝑓
in 𝐼 such that 𝑔 does not divide 𝑓. There exists elements 𝑠 and𝑡 in 𝑅 such that 𝛿(𝑠𝑓 + 𝑡𝑔) < 𝛿(𝑔). Since 𝑠𝑓 + 𝑡𝑔 is in 𝐼, this
contradicts our choice of 𝑔. We deduce that 𝑔 does divide 𝑓 and𝐼 ⊆ ⟨𝑔⟩. Thus, we obtain 𝐼 = ⟨𝑔⟩.⇐: Suppose that 𝑅 is a principal ideal domain. Corollary 9.1.5
shows that 𝑅 is a unique factorization domain. Define the func‑
tion 𝛿∶ 𝑅 ⧵ {0} → ℕ by 𝛿(𝑓) = 2𝑒 where 𝑒 is the number of
irreducible factors appearing in the factorization of 𝑓. Con‑
sider an element 𝑓 in 𝑅 and a nonzero element 𝑔 in 𝑅. Suppose
that 𝑔 does not divide 𝑓. There exists a nonzero element 𝑟 in𝑅 such that ⟨𝑓, 𝑔⟩ = ⟨𝑑⟩. In particular, there exists elements 𝑠
and 𝑡 in 𝑅 such that 𝑠𝑓 + 𝑡𝑔 = 𝑑. It follows that 𝑑 divides 𝑔.
However, 𝑔 does not divide 𝑑, because this would imply that 𝑔
divides 𝑓. We deduce that there are strictly fewer irreducible
elements in the factorization of 𝑑 than in the factorization of 𝑔,
so 𝛿(𝑟) < 𝛿(𝑔). We conclude that 𝛿 is the required Dedekind–
Hasse function.

Nevertheless, there is a difference between a principal ideal
domain and a Euclidean domain. To exhibit this difference, we
document a characteristic of a Euclidean domain.

Lemma 9.2.3. For any Euclidean domain 𝑅 that is not a field, there
exists an element 𝑔 in 𝑅 such that the quotient ring 𝑅/⟨𝑔⟩ has a system
of distinct representative consisting of the 0 and units in 𝑅.

Proof. Let 𝜈∶ 𝑅 ⧵ {0} → ℕ be a Euclidean function on 𝑅. There
exists a nonzero nonunits in 𝑅 because 𝑅 is not a field. By the
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Well‑Ordering 0.2.6 of the nonnegative integers, the set{𝜈(𝑓) ∈ ℕ || 𝑓 is a nonzero nonunit in 𝑅}
has a minimum, say 𝑚. Choose a nonzero nonunit 𝑔 in the ring 𝑅
with 𝜈(𝑔) = 𝑚. For any element 𝑓 in 𝑅, division with remainder
implies that there exists elements 𝑞 and 𝑟 in 𝑅 such that 𝑓 = 𝑞𝑔+𝑟
and either 𝑟 = 0 or 𝜈(𝑟) < 𝜈(𝑔). When 𝑟 ≠ 0, the inequality𝜈(𝑟) < 𝜈(𝑔) forces 𝑟 to be a unit. Since 𝑓 + ⟨𝑔⟩ = 𝑟 + ⟨𝑔⟩, we
conclude that the quotient ring 𝑅/ ⟨𝑔⟩ has a system of distinct
representatives consisting of the 0 and units in 𝑅.

Proposition 9.2.4. The quotient ring ℝ[𝑥, 𝑦] / ⟨𝑥2 + 𝑦2 + 1⟩ is a
principal ideal domain but not a Euclidean domain.

Sketch of Proof. We address the two assertions separately.⦁ We prove that the ring ℝ[𝑥, 𝑦]/⟨𝑥2+𝑦2+1⟩ is not a Euclidean
domain. Regarding the ring ℝ[𝑥, 𝑦] as (ℝ[𝑥])[𝑦], division with
remainder establishes that any polynomial in ℝ[𝑥, 𝑦] has a
unique expression of the form 𝑞 (𝑦2 + 𝑥2 + 1) + (𝑎 + 𝑏𝑦) where𝑞 is in ℝ[𝑥, 𝑦] and 𝑎 and 𝑏 are in ℝ[𝑥]. Hence, the quotient ringℝ[𝑥, 𝑦]/⟨𝑥2 + 𝑦2 + 1⟩ has a system of distinct representatives𝑎 + 𝑏𝑦 for some 𝑎 and 𝑏 in ℝ[𝑥]. Since 𝑦2 = −1 − 𝑥2 in the
quotient ring ℝ[𝑥, 𝑦]/⟨𝑥2+𝑦2+1⟩, we can think of this ring as(ℝ[𝑥])[√−1 − 𝑥2]∶= {𝑎 + 𝑏√−1 − 𝑥2 || 𝑎, 𝑏 ∈ ℝ[𝑥]} .

We claim that the units in the ring 𝑅 are precisely the units
in the field ℝ. Consider the norm function N∶𝑅→ℝ[𝑥] defined,
for any 𝑎 and 𝑏 in ℝ[𝑥], by
N(𝑎 + 𝑏𝑦) = (𝑎 + 𝑏𝑦)(𝑎 − 𝑏𝑦) = 𝑎2 − 𝑏2 𝑦2 = 𝑎2 + (𝑥2 + 1) 𝑏2 .

For any 𝑎, 𝑏, 𝑐, and 𝑑 in ℝ[𝑥], we have
N((𝑎 + 𝑏𝑦)(𝑐 + 𝑑 𝑦)) = N((𝑎 𝑐 − (𝑥2 + 1) 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐) 𝑦)= ((𝑎 𝑐 − (𝑥2 + 1) 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐) 𝑦)((𝑎 𝑐 − (𝑥2 + 1) 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐) 𝑦)= ((𝑎 + 𝑏𝑦)(𝑐 + 𝑑 𝑦))((𝑎 − 𝑏𝑦)(𝑐 − 𝑑 𝑦))= ((𝑎 + 𝑏𝑦)(𝑎 − 𝑏𝑦))((𝑐 + 𝑑 𝑦)(𝑐 − 𝑑 𝑦))= N(𝑎 + 𝑏𝑦) N(𝑐 + 𝑏𝑦) .
Since N is a multiplicative function, a unit in 𝑅 must have a
norm that is a unit in ℝ[𝑥] or equivalently a unit in ℝ. The only
way for 𝑎2 + (𝑥2 +1) 𝑏2 to belong to ℝ is to have 𝑏 = 0 and 𝑎 ∈ ℝ.

Suppose that 𝑅 is a Euclidean domain. By Lemma 9.2.3,
there would be a nonzero nonunit 𝑔 in 𝑅 such that the quotient
ring 𝑅/⟨𝑔⟩ has a system of distinct representative consisting of
the 0 and units in 𝑅. Hence, the composition of the canonical
ring homomorphisms ℝ → ℝ[𝑥] → 𝑅 → 𝑅/ ⟨𝑔⟩ is surjective.
Since every ring homomorphism from a field is injective, this
composition is a ring isomorphism. Choosing real numbers 𝑟
and 𝑠 such that 𝑥 + ⟨𝑔⟩ = 𝑟 + ⟨𝑔⟩ and 𝑦 + ⟨𝑔⟩ = 𝑠 + ⟨𝑔⟩, it follows
that 𝑟2 + 𝑠2 + 1 = 0 in ℝ which is a contradiction.⦁ To prove that 𝑅 is a principal ideal domain, one exhibits a
Dedekind–Hasse function.


