9 Special Domains

Beyond division with remainder, there are a couple features that
distinguish the archetypal rings Z and K[x] from other domains.
We present a hierarchy of commutative rings that includes com-
mutative domains, unique factorization domains, principal ideal
domains, Euclidean domains, and fields.

9.0 Principal Ideal Domains

What are the simplest ideals? We consider a kind of ring having
only uncomplicated ideals.

Definition 9.0.0. A principal ideal domain is a commutative domain
in which every ideal is generated by a single element. A principal
ideal is any ideal generated by a single ring element.

Division with remainder leads to principal ideals.
Theorem 9.0.1. Every Euclidean domain is a principal ideal domain.

Proof. LetI be an ideal in a Euclidean domain R with Euclidean
function v: R \ {0}—>N. When I = (0), the ideal I is principal, so we
may assume I # (0). By the Well-Ordering 0.2.6 of the nonnegative
integers, the set {¥(f) € N | f € I \ {0}} has a minimum, say m.
Choose an element g in the ideal I with v(g) = m. As g € I, we
have (g) C I. For any element f in I, there exists elements q and r
in the Euclidean domain R such that f = qg + r and either r = 0
or ¥(r) < v(g). Sincer = f — qg € I, our choice of g implies that
r = 0. We deduce that f = gg and I C (g). Thus, we conclude that
I={g). O

Remark 9.0.2. Theorem 1.1.2, Theorem 4.0.4, and Problem 8.1.5
show that the ring Z of integers, the ring [K[x] of univariate poly-
nomials over the field KK, and the ring Z[i] of the Gaussian integers
are Euclidean domains, so these rings are principal ideal domains.

Many commutative domains are not principal ideal domains.
Problem 9.0.3. Show that the ideal (2, x) in Z[x] is not principal.

Solution. Suppose that there exists an element g in Z[x] such that
(g) = (2,x). It would follow that f g = 2 for some polynomial f

in Z[x]. Since deg(g) + deg(f) = deg(2) = 0, we would deduce
that g is an integer. We would thereby obtain g = {1, +2} because
2 is a prime integer. Because (2, x) is a maximal ideal in Z[x], the
element g cannot be a unit, so g = *+2. However, we would also
have x € (g), so x = 2 h for some polynomial & in Z[x] which yields
contradiction by mapping to (Z/(Z))[x]. O
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Problem 9.0.4. Demonstrate that the ideal (2,1 — 1/ —3) in Z[/-3]
(which is a subring of the field C) is not principal.

Solution. Suppose that there exists integers a and b such that

(@ + b+/=3) = (2,1 —+/=3). It follows that f (a + by/=3) = 2

for some element f in Z[\/—_3] Taking absolute values in C gives
|f] (a® + 3b?) = 2, s0 a? + 3b? € {+1, +2}. Because a and b integers,
we must have a = +1 and b = 0 which contradicts the fact that
(2,1 —1/=3) is a maximal ideal. O

In a principal ideal domain, the sum of two principal ideals is
generated by a greatest common divisor.

Theorem 9.0.5. Let R be a principal ideal domain. For any nonzero A domain in which a greatest
. . . common divisor of every pair of
elements f and g in R, there exists elements r and s in R such that nonzero elements is a linear

gcd(f,g) = r f + sg. In particular, we have <ng(f, g)} =({f, 8. combination of the two elements is a
Bézout domain.

Proof. SetlI := (f,g). Since R is a principal ideal domain, there is
a element d in R such that I = (d). It follows thatd = rf + sg
for some elements r and s in R. Both f and garein I and I is
generated by d, so d divides f and g. On the other hand, if an
element c in R divides f and g, then c divides r f + sg = d. Hence,
we see thatd = ged(f, g).

Any generator for the ideal (f, g) is a greatest common divisor
of f and g. Lemma 8.1.9 shows that, for any two greatest common
divisors d and e, there exists a unit # in R such thate = ud and
d = u~'e. Thus, we have (e) C (d) and (d) C (e), so (d) = (e). O

We extend the concept of irreducibility to elements in any com-
mutative ring; compare with Definition 1.2.4.

Definition 9.0.6. A ring element f is irreducible if f is nonzero, f
is not a unit, and the equation f = g h implies that g or h is a unit.

Example 9.0.7. The finite ring Z / (6) has no irreducible elements
because (Z/(6))* = {1,5},2 = (2)(4),3 = (3)(3),and 4 = (2)(2).
Without irreducibles, an element may have many factorizations:

4=02)2) =2@2)2)2) =22)2) = .

Lemma 9.0.8. Let R be a commutative domain. For any prime ideal (g)
in R, the ring element g is irreducible.

Proof. Suppose that g = f h. Since the principal ideal (g) is prime,
Theorem 8.0.4 shows that the element g divides f or h. We may
assume that g divides f and there exists an element q in R such
that g f = qg. It follows that g = f h = qgh. Since R is a domain,
we deduce that 1 = g h, so h is a unit and g is irreducible. O

Example 9.0.9. Consider the subring C[x?, x3] ¢ C[x]. Comparing
degrees, we see that the elements x? and x> are irreducible. They
are not prime because x? divides (x*)? = x°® but x? does not divide
x3 and x3 divides x* x> = x% but x> does not divide either x* or x2.
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Problem 9.0.10. Demonstrate that 2 € Z[+/—3] is irreducible but
the ideal (2) is not prime.

Solution. Suppose 2 = (a + by/=3)(c + d+/—3)) for some integers
a, b, ¢, and d. Taking conjugates gives 2 = (a — by/=3)(c — d+/=3).
Multiplying these equations gives 4 = (a? + 3b?)(c? + 3d?). Since
the equation x? + 3y? = 2 has no integral solutions, it follows that
a’?+3b* = 1,soa = *land b = 0. Since 2(p + qy/—3) = 1 has
no integral solutions, the ring element 2 is not a unit. We see that
2 is irreducible. To see that 2 is not prime, observe that 2 divides

4 = (1++/-3)(1 —y/=3), but 2 does not divide either factor. O

Proposition 9.0.11. Let R be a principal ideal domain. For any element
f inR, the following are equivalent:

(a) Theelement f in R is irreducible.

(b) The principal ideal {f) is nonzero and maximal.

(c) The principal ideal (f) is nonzero and prime.

Proof.

(a) =>(b): Suppose that we have the inclusion (f) C (g) for some
element g in R. Equivalently, there exists an element q in R
such that f = qg. Since f is irreducible, either g or q is a unit,
so (f) = (g)or(g) = (1) = R. Because every ideal is prinicipal,
we deduce that (f) is maximal.

(b) =(c): Every nonzero maximal ideal is a nonzero prime ideal.

(c) =(a): Follows from Lemma 9.0.8. O

Exercises

Problem 9.0.12. Consider the subring
Z[V-5]:={a+b\-5|a,beZ}
of field C of complex numbers
(i) Show that the norm function N: Z[\/—_S] — Z defined by
N(a + by/=5) = a® + 5b? is compatible with multiplication,
meaning that the norm of a product is equal to the product
of the norms of the factors.
(ii) Confirm that2 ++/=5 is an irreducible element in Z[/=5].
(iii) Verify that the ideal <2 + \/—_5> is not prime in Z[y/-5].

9.1 Unique Factorization Domains

When can we factor ring elements? We propose a class of rings in
which every element has a unique factorization.

Definition 9.1.0. A commutative domain R is a unique factorization
domain if, for nonzero element f in R, there exists a unit u in R,
finitely many distinct irreducible elements gy, g5, ..., £, in R, and
positive integers ey, e,, ..., e,, such that

m
_ €1 ;€2 em _ €j
f=uglg?gm=ul]g/,
Jj=1
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and this factorization is unique up to reordering the factors.

Remark 9.1.1. The Fundamental Theorem of Arithmetic 1.2.10
shows that the ring Z of integers is a unique factorization domain.

Being a unique factorization domains requires the converse of
Lemma 9.0.8 to hold.

Proposition 9.1.2. Let R be a commutative domain in which every
nonzero nonunit is a product of irreducibles. The ring R is a unique
factorization domain if and only if, for any irreducible element f in R,
the principal ideal { f) is prime.

Proof. We prove each implication separately.

=: Suppose that the ring R is a unique factorization domain. For
any elements g and A in R such that the product g h belongs to
the principal ideal (f), there exists an element q in R such that
gh = q f. Factor g, h, and q into irreducibles. Uniqueness of the
factorizations implies that the irreducible u f, for some unit u
in R, appears on the left side. This element arose as a factor of
either g or h, so we see that g € (f)or h € (f). Theorem 8.0.4
shows the principal ideal (f) is prime.

<: Suppose that any principal ideal generated by an irreducible
element is prime. Consider two factorizations

818 " 8m=hihy - hy
where the elements g; in R and hy in R are irreducible for all
1 £ j< mandl £ k < n. We proceed, by induction on
max(m, n), to show that m = nand g; = c; hy(;j) for some units
¢; in R and some permutation ¢ of the set [m] := {1, 2,...,m}.
The base case max(m,n) = 1has g, = h; and the claim is
trivial. For the inductive step, the given equation shows that g,,
divides h; h, --- h,. By hypothesis, the principal ideal (g,,) is
prime, so there exists an index k such that1 < k < nand g,
divides hy. Since hy is irreducible, there exists a unit ¢, such
that g,, = ci hi. Canceling the element g; from both sides
vields g, 25 - &mn_1 = cx Ny hy -+ hg_; hyyq -+ hy,. The induction
hypothesis establishes that m — 1 = n — 1 and g; = ¢ hy(j) for
some units ¢; in R, forall 2 £ j < m — 1, and some bijection ¢’
from{1,2,..,m—1}t0{1,2,..,k—1,k+1, m}. Setting o(j) = o’(j)
if j # m and o(m) = k yields the required permutation. O

To demonstrate that every principal ideal domain is a unique
factorization domain, we must show that every nonzero nonunit is
a product of irreducibles.

Lemma 9.1.3. Let R be a commutative domain. For any nonzero
nonunit f in R that does not admit a factorization into irreducibles,
there is a proper inclusion (f) C (g) of principal ideals in R where the el-
ement g is another nonzero nonunit that does not admit a factorization
into irreducibles.
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Proof. By hypothesis, the element f is not irreducible. Hence,
there are nonzero nonunits g and i such that f = gh. Ifboth g
and h admitted factorizations into irreducibles, then f also would.
We may assume that the element g does not admit a factorization
into irreducibles. Since h is not a unit, the inclusion (f) C (g) of
principal ideals is proper. O

Theorem 9.1.4. Every nonzero nonunit in any principal ideal domain
is a product of irreducibles.

The assertion is vacuous in a field.

Proof. Let R be a principal ideal domain. Suppose that there exists
a nonzero nonunit f, in R that does not admit a factorization into
irreducibles. Lemma 9.1.3 gives a strict inclusion (f;) C (f;) where
f1 is a nonzero nonunit that does not admit a factorization into
irreducibles. Iterating this step produces an infinite increasing
chain (f,) C (f1) C (f>) C --- of principal ideals in R. We claim that
this is impossible.

Suppose that the principal ideal domain R contains an infinite
increasing chain I,cI, CcI,C--- ofideal. SetI := UjeN I;. The union
I is an ideal: every finite set of elements in I lies in a common I;,

so I is closed under addition and multiplication by elements from Emmy Noether pioneered the
. . . .. . ascending chain condition, which
R because I has these properties. Since R is a principal ideal asserts that no infinite increasing
domain, there exists an element g in R such thatI = (g). The chain of ideal exists. Rings that satisfy
set I is a union, so the element g belongs to I for some index k. this C?rnhdltlon arg known ash’?"ett}’:e”a”
.. rings. € second paragrapn in e
It follows thatI = (g) c I, C IandI; = I. However, thisis proof of Theorem 9.1.4 shows that
impossible because the inclusion I, € I = I is proper. We every principal ideal domain is
e . . . therian.
conclude that every nonzero nonunit in R admits a factorization noetherian
into irreducibles. O

Corollary 9.1.5. Any principal ideal domain is a unique factorization
domain.

Proof. Combine Proposition 9.1.2, Proposition 9.0.11 and Theo-
rem 9.1.4. O

Exercises

Problem 9.1.6. Let R be a principal ideal domain. For any two
distinct nonzero elements f and g with no common irreducible
factor, prove that (f) + (g) = (1).

Problem 9.1.7. Let R be a unique factorization domain such that
the sum of two principal ideals in R is again a principal ideal.
Prove that R is a principal ideal domain.

9.2 Non-Euclidean Principal Ideal Domains

How close is a principal ideal domain to being Euclidean? These
two classes of commutative domains are distinct but the differ-
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ence is surprisingly small. We start by demonstrating that a prin-
cipal ideal domain is “just” a Euclidean domain with more general
notion of a Euclidean function.

Definition 9.2.0. Let R be a commutative domain. A Dedekind-
Hasse function is a function 8: R \ {0} — N such that, for all nonzero
element f and gin R, either g divides f or there exists elements s
and ¢t in R such that 8(s f + t g) < 8(g).

Remark 9.2.1. Any Euclidean function v: R \ {0}— N is a Dedekind-
Hasse function with (s,t) = (1,—q)and f —qg =r.

Proposition 9.2.2. A commutative domain is a principal ideal domain
if and only if it possesses a Dedekind-Hasse function.

Proof. Let R be a commutative domain. We establish the two

implications separately.

=: Suppose that R has a Dedekind-Hasse function §: R \ {0} > N
and let I be a nonzero ideal. By the Well-Ordering 0.2.6 of the
nonnegative integers, the set {(f) € N | f € I \ {0}} has
a minimum, say m. Choose an element g in the ideal I with
5(g) = m. As g € I, we have (g) C I. Consider an element f
in I such that g does not divide f. There exists elements s and
tin R suchthat 8(s f + tg) < 6(g). Since s f + tgisinI, this
contradicts our choice of g. We deduce that g does divide f and
I C (g). Thus, we obtain I = (g).

<: Suppose that R is a principal ideal domain. Corollary 9.1.5
shows that R is a unique factorization domain. Define the func-
tion §: R \ {0} - Nby §(f) = 2° where e is the number of
irreducible factors appearing in the factorization of f. Con-
sider an element f in R and a nonzero element g in R. Suppose
that g does not divide f. There exists a nonzero element r in
R such that (f, g) = (d). In particular, there exists elements s
and t in R such thats f + tg = d. It follows that d divides g.
However, g does not divide d, because this would imply that g
divides f. We deduce that there are strictly fewer irreducible
elements in the factorization of d than in the factorization of g,
so 8(r) < 8(g). We conclude that § is the required Dedekind-
Hasse function. O

Nevertheless, there is a difference between a principal ideal
domain and a Euclidean domain. To exhibit this difference, we
document a characteristic of a Euclidean domain.

Lemma 9.2.3. For any Euclidean domain R that is not a field, there
exists an element g in R such that the quotient ringR/(g) has a system
of distinct representative consisting of the 0 and units in R.

Proof. Letv: R\ {0} - N be a Euclidean function on R. There
exists a nonzero nonunits in R because R is not a field. By the
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Well-Ordering 0.2.6 of the nonnegative integers, the set

{»(f) € N| f is a nonzero nonunit in R}
has a minimum, say m. Choose a nonzero nonunit g in the ring R
with v(g) = m. For any element f in R, division with remainder
implies that there exists elements g and r in R such that f = qg+r
and either r = 0 or ¥(r) < v(g). When r # 0, the inequality
v(r) < v(g) forces r to be a unit. Since f + (g) = r + (g), we
conclude that the quotient ring R / (g) has a system of distinct
representatives consisting of the 0 and units in R. O

Proposition 9.2.4. The quotient ring R[x,y] /(x* + y* + 1) isa
principal ideal domain but not a Euclidean domain.

Sketch of Proof. We address the two assertions separately.

e We prove that the ring R[x, y] /(x?+y*+1) is not a Euclidean
domain. Regarding the ring R[x, y] as (R[x])[y], division with
remainder establishes that any polynomial in R[x, y] has a
unique expression of the form q (y*> + x> + 1) + (a + by) where
q isin R[x, y] and a and b are in R[x]. Hence, the quotient ring
R[x,y]/{(x? + y* + 1) has a system of distinct representatives
a + by for some a and b in R[x]. Since y*> = —1 — x? in the
quotient ring R[x, y]/(x*+y*+1), we can think of this ring as

(R[xD[V-1-x2]:={a+bV-1-x2|a,beR[x]}.

We claim that the units in the ring R are precisely the units
in the field R. Consider the norm function N: R — R[x] defined,
for any a and b in R[x], by

N(a+by)=(a+by)a—by)=a?>-b*y*> =a’? + (x> + 1) b?.
For any a, b, ¢, and d in R[x], we have
N((@a+by)(c+dy))=N((ac—(x>*+1)bd) + (ad + bc)y)
((ac—(x*+1)bd) + (ad + bc)y)((ac—(x* +1)bd) — (ad + bc) y)
((@a+by)c+dy)((a=by)c—-dy))

= ((@+bya-by))(c+dy)c—dy))

=N(a+by)N(c+by).
Since N is a multiplicative function, a unit in R must have a
norm that is a unit in R[x] or equivalently a unit in R. The only
way for a? + (x? + 1) b? to belong to R is to have b = 0 and a € R.

Suppose that R is a Euclidean domain. By Lemma 9.2.3,
there would be a nonzero nonunit g in R such that the quotient
ring R / (g) has a system of distinct representative consisting of
the 0 and units in R. Hence, the composition of the canonical
ring homomorphisms R - R[x] - R - R / (g) is surjective.
Since every ring homomorphism from a field is injective, this
composition is a ring isomorphism. Choosing real numbers r
and s such thatx + (g) = r + (g)and y + (g) = s + (g), it follows
that 2 + s> + 1 = 0 in R which is a contradiction.
e To prove that R is a principal ideal domain, one exhibits a

Dedekind-Hasse function. O
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