10 Irreducible Polynomials

Although the irreducibility depends on the coefficients, irre-
ducible polynomials are much like positive prime integers. In
some ways, they are even simpler.

10.0 Factoring polynomials

When are polynomial rings unique factorization domains? To
answer this question, we need an auxiliary invariant.

Definition 10.0.0. Let R be a unique factorization domain and
consider a polynomial f := a,, X™ + a,,,_; X" ' + -~ + a; X + aq, in
R[x]. The content of the polynomial f is defined to be

cont(f) := ged(a,,, A1, -5 0qg) -

The polynomial f is primitive if cont(f) = 1.

Lemma 10.0.1 (Gauss). Let R be a unique factorization domain. For
any two polynomials f and g in R[x], we have

cont(f g) = cont(f) cont(g).

In particular, when f and g are primitive, the product f g also is.

Proof. We write f = cont(f) f and g = cont(g) § where f and §
are primitive polynomials in R[x]. As f g = cont(f) cont(g) f 8,
it suffices to verify that the product f g is a primitive polynomial.
Letf =ap+a; X+ +auxmand g = by + b, x + - + b, x" for
some Qagy, Ay, ... , Ay, bg, b1, ..., by, in R. Suppose that the coefficients
of f g have a common divisor d which is not a unit. If the element
p in R were an irreducible divisor of d, then p must divide all the
coefficients of f 8. Since f and g are primitive, p does not divide
all the coefficients of f or g. Let a; be the first coefficient of f not
divisible by p and let b, be the first coefficient of g not divisible by
p. Consider the coefficient of x/*+¥ in f g; it has the form

ajbe + (ajy1 b1 + o b + ) + (@1 by + 4o by + ).

By hypothesis, p divides this sum. Moreover, all the terms in the
first parenthesis are divisible by p (because p divides b; for all

i < j)and all terms in the second parenthesis are divisible by

p (because p divides a; for alli < k). It follows that p divides

a; by.. Since (p) is prime ideal, the element p divides either a; or
by contrary to our choice of a; and by. This contradiction ihows
that no irreducible element divides all the coefficients of f g and,

therefore, the product f@ is primitive. O

Replacing the coefficient domain by its fields of fraction does
not alter irreduciblity.
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To define the content, we need to
know that greatest common divisors
exist. The greatest common divisor, if
it exists, is unique only up to multipli-
cation by a unit. Hence, the content of
a polynomial is an equivalence class.
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Lemma 10.0.2. Let R be a unique factorization domain and let K be its

field of fractions.

e For any nonzero polynomial f in the ring K[x], we have f = cf
wherec € K andfis a primitive polynomial in R[x]. Moreover, this
factorization is unique up to multiplication by in unit of R.

e Let f be a polynomial in R[x] having positive degree. When f is
irreducible in R[x], the polynomial f is also irreducible in K[x].

Proof. Finding a common denominator d for the coefficients of
the polynomial f, we obtain f = (é) f where f is a polynomial in
R[x]. Setting ¢ := é cont(f), it follows that f = ¢ f where fisa
primitive polynomial in R[x]. Suppose that f = (3) g for some the
fraction 7 in K and some primitive polynomial g in R[x]. It follows
thatadg = b cont(f) f Taking the content of both sides yields
uad = b cont(f) for some unit u in R. We deduce thatug = f
Since cont(f) divides f, the polynomial f is primitive in R[x].
Suppose that f is reducible in K[x]. It follows that f = g, g,
for some polynomials g, and g, in K[x] having positive degree.
The first part implies that, for any index j, we have g; = ¢; h; for
some ¢; € K and some primitive polynomial k; in R[x]. Hence,
f = c¢; ¢y hy h, and the product h, h, is primitive by Lemma 10.0.1.
The first part implies f and h; h, differ up to multiplication by a
unit of R, which contradicts the irreducibility of f in R[x]. O

Theorem 10.0.3. For any unique factorization domain R, the
polynomial ring R[x] is also a unique factorization domain.

Proof. Let K be the field of fractions for the domain R. Consider
a nonzero polynomial f in the ring R[x]. As K[x] is a principal
ideal domain, Corollary 9.1.5 shows that it a unique factorization
domain. Hence, we can write f = p, p, --- p, where each p; is an
irreducible polynomial in K[x]. Lemma 10.0.2 implies that, for all
1 <i < r,wehave pj =¢;q; for some cj € K and some primitive
polynomial q; in R[x]. Thus, we deduce that f = cq;q;, - q,
where ¢ = Hj ¢j € K. Write ¢ = 7 for some elements a and b in
R. Taking contents, we obtain cont(b f) = cont(aq,q, - q,) = a
by Lemma 10.0.1. We deduce that b cont(f) = a, so b divides a
and cont(f) = cliesin R. Since each g; is irreducible in K[x], it
is irreducible in R[x]. The ring R is a unique factorization domain,
so we have ¢ = ud; d, --- d; where each d; is irreducible in R and
uin R is a unit. It follows that f = ud,;d, --- d;q,q, - q,isa
factorization of f into a product of irreducible elements in R[x].

It remains to check uniqueness. Suppose that we have a second
factorization: f = u'd;d; --- di q} q; -+ q) where each gj is prim-
itive polynomial in R[x] and dJ’- is irreducible element in R. Since
this is also a factorization in K[x], it is unique, so r = k and q; = q;
(up to units and reordering). If primitive polynomials differ by a
unit in K[x], then they also differ by a unit in R[x]. Furthermore,
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we have cont(f) = uw'd;d} ---d; = ud,d, --- dgsos = tand
djf =d; (up to units and reordering). O

Example 10.0.4. The ring Z[x] is a unique factorization domain,
but not a principal ideal domain.

Corollary 10.0.5. For any nonnegative integer n and any unique factor-
ization domain R, the polynomial ring R[xy, X, ..., X, | is also a unique
factorization domain.

Proof. We proceed by induction on n. When n = 0, the assertion
is trivial. Since Theorem 10.0.3 establishes the induction step, the
claim follows. O

Exercises

Problem 10.0.6. Euclid proves that there are infinitely many
prime integers in the following way: if p;, p,, ..., Dx are positive
prime integers, then any prime factor of 1 + p; p, --- px must be
different from p; forany 1 < j < k.
(i) Adapt this argument to show that the set of prime integers of
the form 4 n — 1 is infinite.
(ii) Adapt this argument to show that, for any field K, there are
infinitely many monic irreducible polynomials in K[x].

Problem 10.0.7. Let R be a principal ideal domain and let K be its
field of fractions.
(i) SupposeR = Z. Write r = % € Qinthe formr = 2 + ¢ for
some integers a and b.
(ii) Let g:= pq € R where p and q are coprime. Prove that every
fraction f/g € K can written in the form

f_u, v
g€ q p
for some elements u and v in R.
(iii) Letg := p}'p5*---p;" € R be the factorization of g into
irreducible elements pj, foralll < j < m, such that the
relation p; = upy for some unitu € R implies that j = k.

Prove that every fraction f/g € K can be written in the form

Losh
& =ipy

for some elements hy, h,, ..., h,, in R.

10.1 Irreducibility Criteria

Can we identify irreducible polynomials? In some situations, this
can be relatively easy.

Problem 10.1.0. Is f(x) = x> + 6x? + 7 in Z[x] irreducible?
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Solution. Yes. Otherwise f would have linear factor and its root
would divide 7. However, we have f(1) = 14, f(-1) = 12, f(7) > 0,
and f(=7) = (-1)(49) + 7 < 0. O

Proposition 10.1.1. Let f = a,, x™ + --- + a; X + a, be a polynomial
in the ring R[x] and let (p) be a prime ideal in R that does not contain
ay,. When the image of f in (R /(p))[x] is irreducible, the polynomial f
is irreducible in R[x].

Proof. The canonical surjection 7: R - R / (p) induces a ring
homomorphism ¢: R[x] - R/(p)[x](R/(p))[x]. When f = ghin
the ring R, we obtain ¢(f) = ¢(g) ¢(h). The assumption that the
element p does not divide a,, implies that deg(¢(g)) = deg(g) and
deg(p(h)) = deg(h). Therefore, reducibility of the polynomial f in
R[x] implies the reducibility of the image @(f) in (R/(p))[x]. O

Problem 10.1.2. Is x* + 15x3 + 7 in Q[x] irreducible?

Solution. The image of this polynomial in F5[x] is x* + 2. Since
x*=0,1 (mod 5), we see that x* + 2 has no root in ;. Suppose that
x*+2=((x*>+ax+ b)(x? + cx + d). It follows thata + ¢ = 0,
ac+b+d=0,ad + bc = 0,and bd = 2. Since ¢c = —a, we have
O0=ad+bc=a(d-b),soa=0o0rd =b.

e Suppose thata = 0. We have ¢ = 0. The equationsb +d =0
and bd = 2 imply thatd = —b, —b? = 2, and b?> = 3. However,
02 =0,12 = 1,22 = 4,3% = 4, and 4> = 1. Hence, there is no
element b € I such that b? = 3.

e Suppose that b = d. We have b?> = 2. This is again impossible
because the only perfect squares in 5 are 0, 1, and 4.

We see that the polynomial x* + 2 is irreducible in F;[x]. Thus,

Proposition 10.1.1 shows that x* + 15x3 + 7 is irreducible in Z[x]

and Lemma 10.0.1 shows that it is irreducible in Q[ x]. O

Theorem 10.1.3 (Eisenstein Criterion). Let R a commutative domain
andlet f :== ay + a; x + --- + a,, x™ be a primitive polynomial in R[x]
of positive degree n. When there exists a prime ideal P in R such that

e a, ¢P,

® ay,ay,..,a,,_; € P,and

e a, & P?,

the polynomial f is irreducible in R[x].

Proof. Suppose that f = gh for some polynomials g and & in
R[x] having positive degree. Set g := by + b; X + --- + b; x/ and
h:=cy+c;x+ - + ¢ x¥ where deg(g) = jand deg(h) = k. It
follows that a, = by ¢y belongs to the ideal P. Since P is a prime
ideal, we have b, € P or ¢y € P. Having both b, and ¢, belong to P
would imply that a, € P? contradicting our hypotheses. Without
loss of generality, we may assume that b, € Pandc, ¢ P.If
every coefficient of g were in P, then every coefficient of f would
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Theodor Schénemann first published
a version of this criterion in 1846.
Gotthold Eisenstein published a
somewhat different version in the
same journal in 1850.
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also be in P again contradicting our hypothesis. Let b; be the first
coefficient of g such that b; ¢ P. Since

a;=bjcy+b;_jci+ -+ byc;,
we obtain the equation b; ¢, = a; — b;_;¢; — --- — by c;. Every
element on the right side of this equation lies in P. However, this
implies that b; ¢, € P. Because P is a prime ideal, we deduce that
either b; € P or ¢y € P which is a contradiction. O

We record the following special case.

Corollary 10.1.4. Let R be a unique factorization domain with fraction
fieldK and consider f := ay+a; X+ ---+a,, x™ in the ring R[x]. When
there exists an irreducible element p € R such that

e p does not dividea,,,,

e pdividesa; forall0 <i<m—1,and

e p? does not divide a,,

the polynomial f is irreducible in K[x].

Proof. Theorem 10.1.3 shows that the polynomial f is irreducible
in R[x] and Lemma 10.0.1 shows that f is irreducible in K[x]. O

Problem 10.1.5. Is x> — 6 x* + 3 € Q[x] irreducible?

Solution. Yes, apply Corollary 10.1.4 with p = 3. O

Corollary 10.1.6. For any positive prime integer p, the polynomial
fr=xP 4 xP2 4. 4 x+1
is irreducible in Q[ x].

Proof. Since (x — 1) f(x) = xP — 1, the ring isomorphism given by
X+~ Y+ lyields
VI@+D=@+1)P—=1=y"+(F)yPt +(5)yP2+ -+ (,0)y.
We have (¥) = w. When i < p, the prime integer p is
not a factor of i!, so i! divides the product (p—1)(p—2)---(p—i+1)
which implies that (¥) is divisible by p. Dividing the expansion of
v f(y + 1) by y shows that f(y + 1) satisfies the hypothesis of
Corollary 10.1.4. Therefore, the polynomial

P2+ Gy 4+ ()
is irreducible. We conclude that f is irreducible. O

Exercises

Problem 10.1.7. Let f := a; x> + a, x*> + a; X + a, be a polynomial
in Z[x] having degree 3. Assume that a,, a; + a,, and a; are all odd.
Prove that f is irreducible in Q[x].

Problem 10.1.8. Prove that the polynomial
g=x"+6x*-12x3+9x>-3x+k
in Q[x] is irreducible for infinitely many integers k.

Problem 10.1.9. Prove that h := x° 4+ x* + x — 1is irreducible in
Q[x] using the Eisenstein criterion.
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10.2 Counting Irreducibles

How do we count irreducible elements? The sieve of Eratosthenes is
a method of determining the primes less than a given number n.
List the integers from 2 to n. The smallest entry 2 is prime. Cross
out the multiplies of 2 from our list. The smallest remaining entry
3 is prime because it is not divisible by any smaller prime. Cross
out the multiplies of 3. Repeat. Using this method, Table 10.1 list
the positive prime integers less than 100.

4 6 8 9 10
11 12 13 4 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 63 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 8 8 87 8 89 90
91 92 93 94 95 96 97 98 99

The asymptotic distribution of the primes among the positive
integers has a famous description.

Definition 10.2.0. The prime-counting function t: R - N counts the

number of positive prime integers less than or equal to some real

number; 7t(x) := |{p € N | p is a positive prime integer and p < x}|.
The logarithmic integral function li: (1, o) — R is defined by

. . * dy
li(x) := '/0. O

Prime Number Theorem 10.2.1. We have lim ?83 =
X—oo |1

For any positive prime integer p, sieve methods also allows one
to identify the irreducible polynomials in [,[x]. List all polyno-
mials by degree and then cross out products. Table 10.2 lists the
irreducible polynomials of degree at most 4 in F,[x].

o 1 X x+1
*2 *24+1 X2+x xX2+x+1
*3 X413 4 X3+x+1
953 962 x3 +x2+1 963 : 952 X 953 962 e+
x4 x44+1 x4 4x x*+x+1
x4 4x2 x4 42 4+1 x+x2+x X2 +1
X443 x*+x3+1 X443 X3 +1
¥ w2 21 i XX+ X2 +x+1

Problem 10.2.2. Is x* — 6x3 + 12x? — 3x + 9 in Z[x] irreducible?

Solution. This polynomial is irreducible because its image in [,[x]
is the irreducible polynomial x* + x + 1. O
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The Greek polymath, Eratosthenes of
Cyrene (276BCE-194BCE), is famous
for his work on prime numbers and
for measuring the diameter of the
earth.

Table 10.1: The 25 positive prime
integers less than 100

Assuming the Riemann hypothesis,
one has

|t(x) = li(x)| < %

Table 10.2: Irreducible
polynomials in F,[x] having small
degree
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Remark 10.2.3. Since x? + x + 1 is irreducible in [,[x], Proposi-
tion 9.0.11 implies that the quotient ring K := F,[x] / (x2+x+1)is
a field. When « denotes the image of x in K, the set {1, o} forms a
basis of K over [F,. The field K has four elements: {0,1, a, 1 + a}.

An analogue of the prime number theorem counts irreducible
polynomials over a finite field.

Theorem 10.2.4. Letp be a positive prime integer. For some positive
integer e, setq := p°. Setting N, to be the number of monic irreducible
polynomials in ;[ x] of degree d, we have J s
_4a q
ANy =q". Nd—7+0(7)-
din

One can even prove an analogue of
the Riemann hypothesis, namely that

Sketch of Proof. Consider the formal power series Zg t4e8(® having
integer coefficients where the summation is over all monic polyno-
mials g in the ring F,[x]. The total number of monic polynomials g
in [, [x] of degree n is q", so we have

3 pdee) =
8

The polynomial ring [, [x] is a unique factorization domain. As a
consequence, we obtain

Z tdeg(e) — H(l — tdeg(N)-1 = H(1 — t4)~Na
f d=1

g
where the middle product runs over the monic irreducible polyno-
mials in f in F,[x]. It follows that

— =Tla- ™,
d=1

- 1
24" =T

n=0

1—qt ~
Taking logarithms gives

- q"t" S d

Z :—log(l—qt):—ZNdlog(l—t)

n=1 h d=1
S S AN, B itn<ZdN)

= d 5= = —_ d . D

d=1c=1 dc n=1 n de=n

Theorem 10.2.5. Letp be a positive prime integer. For some positive
integer e, setq := p°. The irreducible factors of x4 — x are precisely the
monic irreducible polynomials in [, [ x] whose degree divides d. [ ]
Example 10.2.6. In F,[x], we have
XB—x=x(x+1D+x+1Dx3+x2+1)
X —x=x(x+1D)+x+DE*+x+ D+ 3+ Dx*F+x3+x2+x+1).
Similarly, in F;[x], we have

X —x=x(x+Dx-D**+Dx2+x-1)(x>—-x—-1).



