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Information about the prime ideals in the ring ℤ[i] of Gaussian
integers deepens our knowledge of the integers. After describing
these ideals, we showcase a few number‑theoretic applications.

11.0 Gaussian Primes

What are the prime ideals in the ring of Gaussian integers? We
first identify those positive prime integers that lift to reducible
elements in the Gaussian integers.

Proposition 11.0.0. For any positive prime integer 𝑝, the following
conditions are equivalent:
(a) The integer 𝑝 is reducible in the ring ℤ[i].
(b) There exists integers 𝑎 and 𝑏 such that 𝑝 = 𝑎2 + 𝑏2.
(c) Either 𝑝 = 2 or 𝑝 ≡ 1 mod 4.
(d) The ring ℤ/⟨𝑝⟩ has an element whose square is [−1]𝑝.
(e) The polynomial 𝑥2 + 1 is reducible in the ring 𝔽𝑝[𝑥].
(f) The ring 𝔽𝑝[i]∶= {𝑎 + 𝑏 i | 𝑎, 𝑏 ∈ 𝔽𝑝 and i2 = −1} is not a field.

Proof. We establish the equivalences by exhibiting a strongly
connected directed graph of implications; see Figure 11.1 (a)
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Figure 11.1: Directed graph of
implications

(a) ⇒(b): Suppose that 𝑝 is reducible in the ring ℤ[i]. There exist
integers 𝑎, 𝑏, 𝑐, and 𝑑 such that 𝑝 = (𝑎 + 𝑏 i)(𝑐 + 𝑑 i) and neither𝑎 + 𝑏 i nor 𝑐 + 𝑑 i is a unit. Taking absolute values squared, we
obtain 𝑝2 = (𝑎2 + 𝑏2)(𝑐2 + 𝑑2). Since 𝑝 is a prime integer, the
ring ℤ is a unique factorization domain, and neither 𝑎2 + 𝑏2 nor𝑐2 + 𝑑2 is equal to 1, we deduce that 𝑎2 + 𝑏2 = 𝑝 = 𝑐2 + 𝑑2.

(b) ⇒(c): Observe that 2 = 12 + 12. Suppose that 𝑝 is odd and𝑝 = 𝑎2 + 𝑏2 for some integers 𝑎 and 𝑏. We may also assume that𝑎 is odd and 𝑏 is even. Since 𝑎 = 2𝑚 + 1 and 𝑏 = 2𝑛 for some
integers 𝑚 and 𝑛, we see that 𝑎2 = 4𝑚2+4𝑚+1 ≡ 1 mod 4 and𝑏2 = 4𝑛2 ≡ 0 mod 4. Hence, we have 𝑝 = 𝑎2 + 𝑏2 ≡ 1 mod 4.

(c) ⇒(d): Since [1]22 = [1]2 = [−1]2, we may assume that 𝑝 − 1 is
divisible by 4. Consider the product 𝑑 ∶= [1]𝑝[2]𝑝 ⋯ [(𝑝 − 1)/2]𝑝.
Observe that𝑑2 = (−1)(𝑝−1)/2 𝑑2= ([1]𝑝 [2]𝑝 ⋯ [(𝑝 − 1)/2]𝑝)([−1]𝑝 [−2]𝑝 ⋯ [−(𝑝 − 1)/2]𝑝)= ([1]𝑝 [2]𝑝 ⋯ [(𝑝 − 1)/2]𝑝)([𝑝 − 1]𝑝 [𝑝 − 2]𝑝 ⋯ [𝑝 − (𝑝 − 1)/2]𝑝)= [1]𝑝 [2]𝑝 ⋯ [(𝑝 − 1)/2]𝑝 [(𝑝 + 1)/2]𝑝 ⋯ [𝑝 − 2]𝑝 [𝑝 − 1]𝑝= [(𝑝 − 1)!]𝑝 .
The Wilson Theorem 2.3.7 gives 𝑑2 = [(𝑝 − 1)!]𝑝 = −1.

(d) ⇒(a): Suppose that 𝑎 is an integer such that [𝑎]2𝑝 = [−1]𝑝. It
follows that 𝑎 ≠ 0 and 𝑝 divides 𝑎2 +1 = (𝑎+ i)(𝑎− i). Assuming
that the element 𝑝 is irreducible in ℤ[i], it would follow that 𝑝
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divides 𝑎 + i or 𝑎 − i. Hence, there would exists integers 𝑐 and 𝑑
such that 𝑎 + i = (𝑐 + 𝑑 i) 𝑝 or 𝑎 + i = (𝑐 + 𝑑 i) 𝑝. Comparing real
and imaginary parts, we would have that 𝑝𝑑 = ±1, and 𝑝 = ±1
which contradicts 𝑝 being a prime integer. Thus, we conclude
that 𝑝 is reducible in the ring ℤ[i].

(d)⇔(e): Since 𝔽𝑝 is a field, Corollary 4.0.9 shows that the monic
quadratic polynomial 𝑥2 + 1 is reducible in 𝔽𝑝[𝑥] if and only if
it has a root in 𝔽𝑝. The polynomial 𝑥2 + 1 has a root in 𝔽𝑝 if and
only if there exists an element in 𝔽𝑝 whose square is −1.

(e)⇔(f): The evaluation map 𝜑∶𝔽𝑝[𝑥]→𝔽𝑝[i] defined by 𝜑(𝑥) = i is
a ring homomorphism whose kernel is ⟨𝑥2 + 1⟩. Hence, the First
Isomorphism Theorem 6.1.1 establishes that𝔽𝑝[𝑥]⟨𝑥2 + 1⟩ ≅ 𝔽𝑝[i] .
Proposition 9.0.11 shows that the quotient ring 𝔽𝑝[𝑥]/⟨𝑥2 + 1⟩ is
a field if and only if the element 𝑥2 + 1 is irreducible.

Generalizing Problem 5.2.5, we register the following fact.

Lemma 11.0.1. Let 𝑎 and 𝑏 be coprime integers, and set 𝑚∶= 𝑎2 + 𝑏2.
The quotient ring ℤ/⟨𝑚⟩ is isomorphic to ℤ[i]/⟨𝑎 + 𝑏 i⟩.
Solution. When 𝑎 = 0 or 𝑏 = 0 (and the other is 1), the assertion
is trivial. We may assume that 𝑎𝑏 ≠ 0. Consider the unique ring
homomorphism 𝜑∶ℤ→ℤ[i]/⟨𝑎 + 𝑏 i⟩ defined, for any integer 𝑛, by𝜑(𝑛) = 𝑛+⟨𝑎 + 𝑏 i⟩; see Problem 5.0.4. We claim that Ker(𝜑) = ⟨𝑚⟩.⊇: Since 𝑚 = 𝑎2 + 𝑏2 = (𝑎 − 𝑏 i)(𝑎 + 𝑏 i) belongs to the ideal⟨𝑎 + 𝑏 i⟩, we have Ker(𝜑) ⊇ ⟨𝑚⟩.⊆: Suppose that 𝑛 ∈ Ker(𝜑). The definition of 𝜑 implies that𝑛 ∈ ⟨𝑎 + 𝑏 i⟩. Hence, there exists integers 𝑐 and 𝑑 such that𝑛 = (𝑎+𝑏 i)(𝑐+𝑑 i) = (𝑎 𝑐−𝑏𝑑)+(𝑎𝑑+𝑏𝑐) i. Comparing real and

imaginary parts, we see that 𝑛 = 𝑎𝑐 − 𝑏𝑑 and 𝑏 𝑐 = −𝑎𝑑. The
integers 𝑎 and 𝑏 being coprime implies that there are integers 𝑗
and 𝑘 such that 𝑐 = 𝑘𝑎 and 𝑑 = 𝑗 𝑏. As 𝑘𝑎𝑏 = −𝑗 𝑎𝑏, we see
that 𝑘 = −𝑗 and 𝑛 = 𝑎 (𝑘𝑎)−𝑏(−𝑘𝑏) = 𝑘 (𝑎2 +𝑏2) = 𝑘𝑚, so we
obtain Ker(𝜑) ⊆ ⟨𝑚⟩.
We next demonstrate that 𝜑 is surjective. Since gcd(𝑚, 𝑏) = 1,

Lemma 2.2.2 establishes that 𝑏 has a multiplicative inverse in the
quotient ring ℤ/⟨𝑚⟩. In other words, there exists an integer 𝑒 such
that [𝑒]𝑚 [𝑏]𝑚 = [1]𝑚. As 𝑚 = 𝑎2 + 𝑏2 = (𝑎 + 𝑏 i)(𝑎 − 𝑏 i), it
follows that i + ⟨𝑎 + 𝑏 i⟩ = (𝑒 𝑏 i) + ⟨𝑎 + 𝑏 i⟩ = (−𝑎𝑒) + ⟨𝑎 + 𝑏 i⟩.
For some integers 𝑐 and 𝑑, consider the coset (𝑐 + 𝑑 i) + ⟨𝑎 + 𝑏 i⟩ inℤ[i]/⟨𝑎 + 𝑏 i⟩. We see that (𝑐+𝑑 i)+ ⟨𝑎 + 𝑏 i⟩ = (𝑐−𝑎𝑑 𝑒)+ ⟨𝑎 + 𝑏 i⟩
and 𝜑 is surjective.

Finally, the First Isomorphism Theorem 6.1.1 shows that the
induced map 𝜑∶ℤ/⟨𝑚⟩→ℤ[i]/⟨𝑎 + 𝑏 i⟩ is an isomorphism.

We now characterize the prime ideals in the Gaussian integers.
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Theorem 11.0.2. Let 𝑝 be a positive prime integer. When 𝑝 = 4 𝑗 + 3
for some integer 𝑗, the element 𝑝 is irreducible in ℤ[i]. When 𝑝 = 2 or𝑝 = 4𝑘 + 1 for some integer 𝑘, we have 𝑝 = (𝑎 + 𝑏 i)(𝑎 − 𝑏 i) inℤ[i] and both 𝑎 + 𝑏 i and 𝑎 − 𝑏 i are irreducible in ℤ[i]. Conversely, for
any irreducible element 𝑧 in ℤ[i], either 𝑧𝑧 is a prime integer or it is the
square of a prime integer.

Proof. Proposition 11.0.0 shows that 𝑝 is irreducible in the ring ℤ[i]
if and only if 𝑝 = 4 𝑗 + 3 for some integer 𝑗, and the integer 𝑝 is
a sum of two squares if and only if 𝑝 = 2 or 𝑝 = 4𝑘 + 1 for some
integer 𝑘. In the second case, there exists integers 𝑎 and 𝑏 such
that 𝑝 = 𝑎2 + 𝑏2 = (𝑎 + 𝑏 i)(𝑎 − 𝑏 i). Since |𝑎 + 𝑏 i|2 = |𝑎 − 𝑏 i|2 = 𝑝
is irreducible in ℤ, we conclude that 𝑎 + 𝑏 i and 𝑎 − 𝑏 i are both
irreducible in ℤ[i].

Suppose that, for some integers 𝑎 and 𝑏, the element 𝑎 + 𝑏 i is
irreducible in the ring ℤ[i]. When 𝑎 = 0 or 𝑏 = 0, irreducibility
implies that the other integer is a positive prime. In this situation,
Proposition 11.0.0 shows that 𝑎 or 𝑏 = −i (𝑎 + 𝑏 i) has the form4 𝑗 + 3 for some integer 𝑗. When 𝑎𝑏 ≠ 0, we may assume that
gcd(𝑎, 𝑏) = 1, because otherwise 𝑎 + 𝑏 i is reducible in ℤ[i]. Setting𝑚 ∶= 𝑎2 + 𝑏2, Lemma 11.0.1 implies that ℤ/⟨𝑚⟩ ≅ ℤ[i]/⟨𝑎 + 𝑏 i⟩.
Proposition 9.0.11 proves that 𝑎 + 𝑏 i is irreducible if and only if
these quotient rings are fields, and Theorem 2.2.4 establishes thatℤ/⟨𝑚⟩ is a field if and only if 𝑚 is a prime integer.

11.1 Sums of Two Squares

How is ring theory useful in number theory? As a first answer, we
determine which positive integers are the sum of two squares.

Lemma 11.1.0. Let 𝑚 be a positive integer. When 𝑚 = 𝑎2 + 𝑏2
for coprime integers 𝑎 and 𝑏, every odd prime that divides 𝑚 may be
expressed in the form 4 𝑗 + 1 for some integer 𝑗.

Proof. Let 𝑝 be an odd prime that divides 𝑚. The integers 𝑎 and𝑏 being coprime means that 𝑝 cannot divide both of them. We
may assume that gcd(𝑝, 𝑎) = 1. Division with remainder 1.1.2
implies that there exists integer 𝑞 and 𝑟 such that 𝑎 = 𝑞𝑝 + 𝑟 and1 ⩽ 𝑟 < 𝑝. Theorem 2.2.4 shows that there exists an integer 𝑠 such
that [𝑟]𝑝 [𝑠]𝑝 = [1]𝑝. It follows that([𝑠]𝑝 [𝑏]𝑝)2 = [𝑠]2𝑝 ([𝑚]𝑝 − [𝑎]2𝑝) = [𝑠]2𝑝 [0]𝑝 − ([𝑠]𝑝 [𝑟]𝑝)2 = [−1]𝑝 .
As ℤ/⟨𝑝⟩ has an element whose square is [−1]𝑝, Proposition 11.0.0
shows that 𝑝 = 2 or 𝑝 = 4 𝑗 + 1 for some integer 𝑗.

Two‑Square Theorem 11.1.1. An integer greater than one can be
written as a sum of two squares if and only if its prime decomposition
contains no factor 𝑝𝑒, where the prime 𝑝 has the form 4𝑘 + 3 for some
integer 𝑘 and 𝑒 is odd.

Legendre’s Three‑Square Theorem
characterizes those integers that can
be written as a sum of three squares,
and Lagrange’s Four‑Square Theorem
proves that every integer can be
written as a sum of four squares.
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Proof. We prove each implication separately.⇐: Suppose that, in the prime decomposition of the integer 𝑛,
every prime of the form 4𝑘 + 3 appears an even number of
times. It follows that 𝑛 = 𝑟2 𝑠 where 𝑟 and 𝑠 are integers and
every prime appearing in the decomposition of 𝑠 is either 2 or
has the form 4 𝑗 + 1 for some integer 𝑗. By Proposition 11.0.0,
every prime factor of 𝑠 is a sum of two squares. The equation(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = |𝑎 − 𝑏 i|2 |𝑐 + 𝑑 i|2= ||(𝑎 − 𝑏 i)(𝑐 + 𝑑 i)||2= ||(𝑎 𝑐 + 𝑏𝑑) + (𝑎𝑑 − 𝑏𝑐) i||2= (𝑎 𝑐 + 𝑏𝑑)2 + (𝑎𝑑 − 𝑏𝑐)2
implies that 𝑠 is a sum of two squares. Lastly, the identity𝑟2 (𝑓2 + 𝑔2) = (𝑟𝑓)2 + (𝑟 𝑔)2 shows that 𝑛 is also a sum of
two squares.⇒: Suppose that 𝑛 = 𝑎2 + 𝑏2 for some integers 𝑎 and 𝑏, and set𝑘 ∶= gcd(𝑎, 𝑏). There exists integers 𝑐 and 𝑑 such that 𝑎 = 𝑘𝑐
and 𝑏 = 𝑘𝑑, so 𝑛 = 𝑘2 (𝑐2 + 𝑑2) and gcd(𝑐, 𝑑) = 1. Lemma 11.1.0
establishes that the only prime divisors of 𝑐2 + 𝑑2 are 2 and
primes of the form 4 𝑗 + 1 for some integer 𝑗. It follows that a
prime 𝑝 of the form 4𝑘 + 3 for some integer 𝑘 that divides 𝑛
must also divide 𝑘. If 𝑝𝑒 is the highest power of 𝑝 that divides 𝑘,
then 𝑝2𝑒 is the power that divides 𝑛.

Lemma 11.1.2. Let 𝑥 and 𝑦 be coprime integers. When 𝑥 and 𝑦 have
opposite parity, the elements 𝑥 + 𝑦 i and 𝑥 − 𝑦 i are coprime in ℤ[i]. Opposite parity means that one

integer is odd and the other is even.

Proof. Suppose that 𝑎 + 𝑏 i is an irreducible element in ℤ[i] that
divides both 𝑥 + 𝑦 i and 𝑥 − 𝑦 i. This irreducible element must
divide both (𝑥+ 𝑦 i) + (𝑥− 𝑦 i) = 2𝑥 and (𝑥+ 𝑦 i) − (𝑥− 𝑦 i) = 2𝑦 i.
As i is a unit, it follows that 𝑎 + 𝑏 i divides 2𝑥 and 2𝑦.

Assume that 𝑎 + 𝑏 i does not divide 2 in ℤ[i]. It would follow
that 𝑎 + 𝑏 i divides 𝑥 and 𝑦. Since 𝑥 and 𝑦 are coprime in ℤ, we
would have 𝑎 + 𝑏 i ∉ ℤ and 𝑎 + 𝑏 i ≠ 𝑎 − 𝑏 i. Given integers 𝑐 and𝑑 such that 𝑥 = (𝑎 + 𝑏 i)(𝑐 + 𝑑 i), conjugation would imply that𝑥 = (𝑎 − 𝑏 i)(𝑐 − 𝑑 i), so the element 𝑎 − 𝑏 i would divide 𝑥 and the
product (𝑎 − 𝑏 i)(𝑎 + 𝑏 i) = 𝑎2 + 𝑏2 would divide 𝑥. The analogous
argument would show that 𝑎 − 𝑏 i and 𝑎2 + 𝑏2 divide 𝑦. However,
this is a contradiction because 𝑥 and 𝑦 are coprime integers.

The only other possibility is that 𝑎 + 𝑏 i divides 2 in ℤ[i]. It
follows that 𝑎+𝑏 i equals 1+ i, up to multiplication by a unit. Thus,
we have 𝑥+𝑦 i1+i = (𝑥+𝑦 i1+i )( 1−i1−i ) = (𝑥+𝑦2 ) − (𝑥−𝑦2 ) i is an element in ℤ[i].
This happens if and only if 𝑥 and 𝑦 have the same parity. Thus,
when 𝑥 and 𝑦 have opposite parity, the greatest common divisor of𝑥 + 𝑦 i and 𝑥 − 𝑦 i in ℤ[i] is a unit.

As a second answer to our motivating question, we describe the
primitive Pythagorean triples.
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Proposition 11.1.3. The integer 𝑥, 𝑦, and 𝑧 have no common prime
divisor and satisfy the equation 𝑥2 + 𝑦2 = 𝑧2 if and only if there exists
integers 𝑎 and 𝑏 such that 𝑥 = 𝑎2 − 𝑏2, 𝑦 = 2𝑎𝑏, and 𝑧 = 𝑎2 + 𝑏2.

Proof. We prove each implication separately.⇐: Suppose that there exists integers 𝑎 and 𝑏 such that 𝑥 = 𝑎2−𝑏2,𝑦 = 2𝑎𝑏, and 𝑧 = 𝑎2 + 𝑏2. We have𝑥2 + 𝑦2 = (𝑎2 − 𝑏2)2 + (2𝑎𝑏)2= 𝑎4 − 2𝑎2 𝑏2 + 𝑏4 + 4𝑎2 𝑏2= 𝑎4 + 2𝑎2 𝑏2 + 𝑏4= (𝑎2 + 𝑏2)2 = 𝑧2 .⇒: Suppose that 𝑥2 + 𝑦2 = 𝑧2 and 𝑥, 𝑦, and 𝑧 have no common
prime divisor. Any prime that divides two of these integers
would also divide the third, so 𝑥, 𝑦, and 𝑧 are pairwise coprime.
If 𝑥 and 𝑦 were both odd, then 𝑥2 and 𝑦2 are congruent to 1
modulo 4. However, this would mean that 𝑧2 is congruent to 2
modulo 4 which is impossible. Hence, the integers 𝑥 and 𝑦 have
the opposite parity and 𝑧 is odd. Lemma 11.1.2 proves that 𝑥+𝑦 i
and 𝑥−𝑦 i are coprime in ℤ[i]. As 𝑧2 = 𝑥2+𝑦2 = (𝑥+𝑦 i)(𝑥−𝑦 i),
the ring ℤ[i] of Gaussian integers being a unique factorization
domain implies that 𝑥 + 𝑦 i is the square of an element in ℤ[i].
Hence, there exists integers 𝑎 and 𝑏 such that𝑥 + 𝑦 i = (𝑎 + 𝑏 i)2 = (𝑎2 − 𝑏2) + (2𝑎𝑏) i .
We conclude that 𝑥 = 𝑎2 − 𝑏2, 𝑦 = 2𝑎𝑏, and 𝑧 = 𝑎2 + 𝑏2.


