Problem Set #8

Due: Friday, March 9, 2007

- **1.** Let $f(x)=\frac{1}{2}\big(x+|x|\big)=\left\{ egin{array}{l} x & \mbox{if } x\geq 0 \\ 0 & \mbox{if } x<0 \end{array}
 ight.$ Find the projection of f onto $U:=\mathbb{R}[x]_{\leq 2}$ using the following:

 - (a) Legendre polynomials and $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)\ dx;$ (b) Chebyshev polynomials and $\langle f,g\rangle=\int_{-1}^1 \frac{f(x)g(x)}{\sqrt{1-x^2}}\ dx;$
 - (c) "Normal equations" and $\langle f, g \rangle = \sum_{k=-3}^{3} f(\frac{k}{3}) g(\frac{k}{3})$.
- **2.** Find $g \in \mathbb{R}[t]_{\leq 2}$ such that $\int_0^1 f(t) \cos(\pi t) \ dt = \int_0^1 f(t) g(t) \ dt$ for all $f \in \mathbb{R}[t]_{\leq 2}$.
- **3.** Let V be the \mathbb{R} -subspace of $C^2([0,1])$ consisting of all f satisfying f(0)=f(1)=0. Suppose $S: V \to C([0,1])$ is defined by S(f) = f'' + f'.
 - (a) If $\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt$, then find S^* . (b) If $\langle f, g \rangle = \int_0^1 f(t)g(t)e^t \, dt$, then find S^* .