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Algebraic geometry studies zeros of multivariate polynomials. To
begin, we introduce the geometric manifestations for the solutions of
a system of polynomial equations.

The set N := {0, 1, 2, . . . } of nonnegative integers contains zero.
Throughout, K denotes an arbitrary field. Familiar fields include the
real numbers R, the complex numbers C, the rational numbers Q,
and the finite field Fp := Z/hpi where p is a prime integer.

Unlike R and C, both Q and Fp are
computable fields—operations are
effectively implemented in computer
algebra systems.

0.0 Affine Space

What is the basic ambient space in algebraic geometry?

0.0.0 Definition. A monomial is a product of powers of variables with
nonnegative integer exponents. Given the variables x1, x2, . . . , xn, a
monomial has the form x

u := x
u1
1 x

u2
2 · · · x

un

n
for some exponent vector

u := (u1, u2, . . . , un) 2 Nn. The total degree of this monomial is the
sum |u| := u1 + u2 + · · ·+ un.

The constant 1 := x
0
1x

0
2 · · · x

0
n

is a
monomial. It is also the empty product
of variables.

In the ring S, the additive identity is

0S := Â
u2Nn

0 x
u

and the multiplicative identity is

1S := 1 + Â
0 6=u2Nn

0 x
u .

The coefficient field K embeds into S by
sending a 2 K to a 1 := a.

A polynomial f in the variables x1, x2, . . . , xn with coefficients in the
field K is a finite linear combination of monomials:

f := Â
u2Nn

au x
u

where au 2 K and only finitely many coefficients au are nonzero. The
set of all such polynomials is denoted by S := K[x1, x2, . . . , xn]. Both
addition and multiplication of polynomials are defined termwise
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Equipped with these operations, one verifies that the polynomial ring

S := K[x1, x2, . . . , xn] is a commutative K-algebra.
For a nonzero coefficient au, the product au x

u is a term of f . The
total degree of a nonzero polynomial f in S is the maximum |u|
among the nonzero coefficients au. A polynomial is homogeneous

if its nonzero terms all have the same total degree.

When dealing with polynomials in a
small number of variables, we usually
dispense with subscripts. For example,
K[w, x, y, z] is a polynomial ring in four
variables.
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0.0.1 Example. The homogeneous polynomial xyz + 3y
2
z � 7wz

2 in
Q[w, x, y, z] has 3 terms and total degree 3. ⇧

We use the terminology “affine space”
to emphasize the geometry rather than
the algebraic properties of the K-vector
space Kn. In affine space, the origin has
no special role.

0.0.2 Definition. For any nonnegative integer n, the n-dimensional
affine space over a field K is the set

An = An(K) :=
�
(a1, a2, . . . , an)

�� ai 2 K for all 1 6 i 6 n
 

.

Elements in the polynomial ring S := K[x1, x2, . . . , xn] are regarded
as functions on the affine space An. Is the zero polynomial the same
as the zero function?

0.0.3 Proposition. Let K be an infinite field and let n be a nonnegative

integer. A polynomial f in S := K[x1, x2, . . . , xn] is zero if and only if the

function f : An ! K, defined by evaluation, is zero.

Proof. Since its evaluation at any point is zero, the zero polynomial
gives a zero function. For the converse, we must show that f is the
zero polynomial when f (a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) 2 An.
We proceed by induction on n.

The case n = 0 is trivial. When n = 1, a nonzero polynomial in
K[x] of degree m has at most m distinct roots. By assumption, we
have f (a) = 0 for all a 2 K. Since K is infinite, this means f has
infinitely many roots which implies that f is the zero polynomial.

Assume the claim holds for n � 1 and let f be a polynomial in
K[x1, x2, . . . , xn] that vanishes at all points in An. Express f in the
form f = Âi2N gi x

i
n where gi 2 K[x1, x2, . . . , xn�1]. Fixing a point

(a1, a2, . . . , an�1) in An�1, the partial evaluation f (a1, a2, . . . , an�1, xn)

lies in K[xn]. By hypothesis, the polynomial f (a1, a2, . . . , an�1, xn)

vanishes when xn = an for any an in K. The base case of the in-
duction establishes that f (a1, a2 . . . , an�1, xn) is the zero polynomial,
whence gi(a1, a2, . . . , an�1) = 0 for all i 2 N. Since (a1, a2, . . . , an�1) in
An�1 is an arbitrary point, the induction hypothesis guarantees that
each gi is the zero polynomial, so we have f = 0.

0.0.4 Corollary. Let K be an infinite field and let n be a nonnegative integer.

Consider two polynomials f and g in S := K[x1, x2, . . . , xn]. We have the

equality f = g if and only if the functions f : An ! K and g : An ! K,

defined by evaluation, are equal.

Proof. Apply Proposition 0.0.3 to the difference f � g.

0.1 Affine Subvarieties

What are the basic geometry objects in algebraic geometry?

This definition is extrinsic; it depends
on the choice of an ambient space.

0.1.0 Definition. An affine subvariety is the set of the common zeroes
for a collection of polynomials. For any field K and any nonnegative
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integers m and n, the affine subvariety defined by the polynomials
f1, f2, . . . , fm in the ring S := K[x1, x2, . . . , xn] is

V( f1, f2, . . . , fm) :=
�
(a1, a2, . . . , an) 2 An

�� fi(a1, a2, . . . , an) = 0 for all 1 6 i 6 m
 

.

We illustrate this fundamental concept with several examples.

0.1.1 Examples.
• Both An = V(0) and ∆ = V(1) are affine subvarieties.
• The singleton {(a1, a2 . . . , an)} is V(x1 � a1, x2 � a2, . . . , xn � an).
• Any individual affine subvariety is determined by more than one

collection of polynomials. For instance, we have

�
(1, 1), (2, 3)

 
= V(2x � y � 1, x

2 � 3x + 2)
= V(2x � y � 1, y

2 � 4y + 3) .

• The z-axis in A3 is V(x, y). Moreover, any coordinate subspace is
an affine subvariety defined by a subset of the variables.

• The zero set of a single polynomial is a hypersurface.
• The zero set of a linear (degree-one) polynomial is a hyperplane. For

any a, b, c, d in K, the line defined by a x + b y = c in A2 and the
plane defined by a x + b y + c z = d in A3 are hyperplanes.

• A linear subspace is the common zeroes of linear polynomials.
• The set of all (n ⇥ n)-matrices can be identified with An

2
. The

subset SL(n, K) of matrices having determinant 1 forms an affine
subvariety. It is the hypersurface determined by the polynomial

det

0

BB@

2

664

x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

. . .
...

xn,1 xn,2 · · · xn,n

3

775

1

CCA� 1 .

• A determinantal variety is an affine subvariety in Amn formed by
(m ⇥ n)-matrices of rank at most r. When r > min(m, n), this
variety is Amn. For any r < min(m, n), the rank of a matrix is at
most r if and only if its (r + 1)⇥ (r + 1) subdeterminants vanish.
Because the subdeterminants are polynomials, the set of matrices
of rank at most r do determine an affine subvariety. ⇧

0.1.2 Examples (Counterexamples).
• Since a nonzero polynomial has finitely many roots, neither N nor

Z are affine subvarieties in A1(C). In complex analysis, the identity
theorem establishes that two entire
functions that agree on a subset with an
accumulation point are equal.

• Since polynomials are holomorphic functions, a closed ball with
positive radius in An(C) is not an affine subvariety. ⇧

Affine subvarieties are compatible with finite unions and arbitrary
intersections.
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0.1.3 Lemma. The union of two affine subvarieties is an affine subvariety.

The intersection of any family of affine subvarieties is an affine subvariety.

Proof. First, for any X := V( f1, f2, . . . , f`) and Y := V(g1, g2, . . . , gm)

in An, we show that X [ Y = V( fi gj | 1 6 i 6 ` and 1 6 j 6 m) by
proving containment in both directions.
✓: Given a point a in X [ Y, it follows that either a 2 X or a 2 Y, so a

is a zero of each product fi gj.
◆: Suppose that a 2 V( fi gj) and a 62 X. Hence, there exists an

index i such that fi(a) 6= 0. For any index j, the polynomial fi gj

vanishes at a, so gj(a) = 0 and a 2 Y.
Next, consider a family V( fb,1, fb,2, . . . , fb,mb

) of affine subvarieties
in An, where b 2 B and B is an arbitrary index set. It follows that

V
⇣[

b2B{ fb,1, fb,2, . . . , fb,mb
}
⌘

=
n

a 2 An

��� f (a) = 0 for all f 2
[

b2B{ fb,1, fb,2, . . . , fb,mb
}
o

=
\

b2B
�

a 2 An
�� f (a) = 0 for all f 2 { fb,1, fb,2, . . . , fb,mb

}
 

=
\

b2B V( fb,1, fb,2, . . . , fb,mb
) .

0.1.4 Example. The twisted cubic curve in A3 is the intersection of two
hypersurfaces: V(x

2 � y, x
3 � z) = V(x

2 � y) \ V(x
2 � z). The union

of the yz-plane and the x-axis in A3 is V(xy, xz) = V(x) [ V(y, z) ⇧

0.1.5 Definition. The first part of Example 0.1.1 and Lemma 0.1.3
prove that affine subvarieties in An satisfy the axioms for closed sets
in a topological space, called the Zariski topology. Each Zariski open
set is the complement of an affine subvariety.

This topology is named after Oscar
Zariski (1899–1986), who championed
the use of modern algebra in algebraic
geometry.

We can describe the Zariski topology on complex affine line A1(C).

0.1.6 Example. Every ideal in the univariate polynomial ring C[x]

is principal, so every affine variety is a hypersurface. Since the field
C is algebraically closed, every nonzero polynomial f in C[x] fac-
tors as a0(x � a1)(x � a2) · · · (x � ad) for some nonnegative in-
teger d and some complex numbers a0, a1, . . . , ad. It follows that
V( f ) = {a1, a2, . . . , ad}. Thus, the affine varieties in A1(C) are the fi-
nite subsets (including the empty set) and the whole space. The open
sets in A1(C) are the empty set and the complements of finite sub-
sets. In particular, the Zariski topology is coarser than the Euclidean
topology and the Zariski topology is not Hausdorff. ⇧

The structure of an affine subvariety
depends on the base field. The set of
rational numbers Q is an affine variety
in A1(Q), but not when it is viewed as a
subset of A1(R) or A1(C).

0.1.7 Definition. A topological space is irreducible if it is not the union
of two proper closed subsets.

The empty set is not irreducible.

0.1.8 Example. The affine line A1(C) is irreducible because its only
proper closed subsets are finite, yet it is infinite. ⇧
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0.2 Parametrization

How can we describe the points in an affine subvariety?

0.2.0 Example. Consider the line V(x + y + z � 1, x + 2y � z � 3) in
A3 given as the intersection of two planes. The points in this linear
subspace may also be described algebraically. Since we have

⇢
x + y + z = 1
x + 2y � z = 3

�
,

⇢
x + 3z =�1

y � 2z = 2

�
,

all the points on the line are given, for some t 2 K, by x = �1 � 3t,
y = 2 + 2t, and z = t. This is a parametrization of the line. ⇧

The row reduction algorithm allows one
to parametrize linear subspaces.

0.2.1 Definition. A rational function in the variables t1, t2, . . . , tm with
coefficients in K is a quotient f /g where f and g are polynomials
in K[t1, t2, . . . , tm], and g is nonzero. Two rational functions f1/g1
and f2/g2 are equal if f1 g2 = f2 g1 in K[t1, t2, . . . , tm]. The set of all
rational functions in variables t1, t2, . . . , tm with coefficients in K is
denoted by K(t1, t2, . . . , tm); it is the fraction field of the polynomial
ring K[t1, t2, . . . , tm].

0.2.2 Example. Consider X = V(x
2 + y

2 � 1) ⇢ A2(R). A common way
to parametrize the unit circle involves the trigonometric functions
x = cos(t) and y = sin(t). However, there is also an algebraic way.
Since lim

t!±•
(1 � t

2)/(1 + t
2) = �1, lim

t!±•
2t/(1 + t

2) = 0, and

✓
1 � t

2

1 + t2

◆2

+

✓
2t

1 + t2

◆2
=

1 � 2t
2 + t

4 + 4t
2

(1 + t2)2 =
(1 + t

2)2

(1 + t2)2 = 1

we see that X \ {(�1, 0)} =
n⇣

1�t
2

1+t2 , 2t

1+t2

⌘ ��� t 2 A1(R)
o

. ⇧

0.2.3 Definition. The rational map r : Am 99K An is determined by an
assignment (t1, t2, . . . , tm) 7! (r1, r2, . . . , rn) where rj, for any index
j, is a rational function in K(t1, t2, . . . , tm). We use the dashed arrow
because a rational map need not give a well-defined function from
Am to An. When rj = f j/gj for some relatively prime polynomials f j

and gj in K[t1, t2, . . . , tm], the rational map r is not well-defined at the
points where any of the gj = 0. Nevertheless, over the Zariski open
subset U := Am \ V(g1, g2, . . . , gn), we get a function r : U ! An.

Can the image of a rational map be described by polynomials?

0.2.4 Definition. Let W be a subset of An. The Zariski closure of W,
denoted W, is the smallest affine subvariety in An containing W.
Thus, W is the intersection of all the closed subsets containing W.

0.2.5 Problem (Implicitization). For any subset W ✓ Am and
any rational map r : Am 99K An, find polynomials f1, f2 . . . , f` in
K[x1, x2, . . . , xn] such that r(W) = V( f1, f2, . . . , f`).
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0.2.6 Example. Consider the polynomial map r : A2 ! A3 defined by
(s, t) 7! (s + t, s � t, s + 2t). It follows that

8
<

:

x = s + t

y = s � t

z = s + 2t

9
=

; ,

8
<

:

s + t � x = 0
s � t � y = 0
s + 2t � z = 0

9
=

;

,

8
<

:

s + t � x = 0
� 2t + x � y = 0

t + x � z = 0

9
=

; ,

8
<

:

s + t � x = 0
t + x � z = 0

3x � y � 2z = 0

9
=

;

Hence, the image is the hyperplane V(3x � y � 2z) ⇢ A3. ⇧

0.2.7 Example. For any nonnegative integer n, let r : A2 ! An be
the polynomial map defined by t 7! (t, t

2, . . . , t
n). The quadratic

equations xi xj = xk x`, for all i + j = k + `, vanish on the image. Are
there more polynomial equations that vanish on the image? ⇧

In this course, we will see that the implicitization problem has an
algorithmic solution. However, the converse is much harder.

0.2.8 Definition. A rational parametrization of an affine subvariety X in
An is a rational map r : Am 99K An such that X is the Zariski closure
of the image of r. An affine subvariety X is unirational if it admits a
rational parametrization.

0.2.9 Example. The unit circle is, by Example 0.2.2, unirational. ⇧

0.2.10 Example. The affine subvariety V(x
2 + y

2 + z
2 � 1) ⇢ A3 is

unirational with a polynomial parametrization given by

(t0, t1) 7!
8
>>>:

2 t0
t2
0 + t + 11 + 1

,
2 t1

t2
0 + t1

1 + 1
,

t
2
0 + t

2
1 � 1

t2
0 + t2

1 + 1

9
>>>; . ⇧

0.2.11 Example. The Fermat hypersurface V(w3 + x
3 + y

3 + z
3) ⇢ A4

is unirational with a parametrization given by

0

@
t0
t1
t2

1

A 7!

0

BBB@

�(t0 + t1)t2
2 + (t2

1 + 2t
2
0)t2 � t

3
1 + t0t

2
1 � 2t

2
0t1 � t

3
0

t
3
2 � (t0 + t1)t2

2 + (t2
1 + 2t

2
0)t

3
2 + t0t

2
1 � 2t

2
0t1 + t

3
0

�t
3
2 + (t0 + t1)t2

2 � (t2
1 + 2t

2
0)t2 + 2t0t

2
1 � t

2
0t1 + 2t

3
0

(t1 � 2t0)t2
2 + (t2

1 � t
2
0)t2 + t

3
1 � t0t

2
1 + 2t

2
0t1 � 2t

3
1

1

CCCA
. ⇧

0.2.12 Remark. For a general low-degree hypersurface, there are no
techniques for disproving unrationality. However, unirationality has
been established only when deg( f ) = 2 and n > 2, deg( f ) = 3 and
n > 3, or n � deg( f ). For a fixed degree greater than 3, there are
many values of n for which unirationality is an open problem. In
contrast, a general degree d hypersurface in An(C) does not admit a
rational parametrization whenever d > n. For instance, the quartic
hypersurface V(x

4 + y
4 + z

4 � 1) in A3 lacks one.


