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0.2.6 Example. Consider the polynomial map r : A2 ! A3 defined by
(s, t) 7! (s + t, s � t, s + 2t). It follows that

8
<

:

x = s + t

y = s � t

z = s + 2t

9
=

; ,

8
<

:

s + t � x = 0
s � t � y = 0
s + 2t � z = 0

9
=

;

,

8
<

:

s + t � x = 0
� 2t + x � y = 0

t + x � z = 0

9
=

; ,

8
<

:

s + t � x = 0
t + x � z = 0

3x � y � 2z = 0

9
=

;

Hence, the image is the hyperplane V(3x � y � 2z) ⇢ A3. ⇧

0.2.7 Example. For any nonnegative integer n, let r : A2 ! An be
the polynomial map defined by t 7! (t, t

2, . . . , t
n). The quadratic

equations xi xj = xk x`, for all i + j = k + `, vanish on the image. Are
there more polynomial equations that vanish on the image? ⇧

In this course, we will see that the implicitization problem has an
algorithmic solution. However, the converse is much harder.

0.2.8 Definition. A rational parametrization of an affine subvariety X in
An is a rational map r : Am 99K An such that X is the Zariski closure
of the image of r. An affine subvariety X is unirational if it admits a
rational parametrization.

0.2.9 Example. The unit circle is, by Example 0.2.2, unirational. ⇧

0.2.10 Example. The affine subvariety V(x
2 + y

2 + z
2 � 1) ⇢ A3 is

unirational with a polynomial parametrization given by

(t0, t1) 7!
8
>>>:

2 t0
t2
0 + t + 11 + 1

,
2 t1

t2
0 + t1

1 + 1
,

t
2
0 + t

2
1 � 1

t2
0 + t2

1 + 1

9
>>>; . ⇧

0.2.11 Example. The Fermat hypersurface V(w3 + x
3 + y

3 + z
3) ⇢ A4

is unirational with a parametrization given by

0

@
t0
t1
t2

1

A 7!

0

BBB@

�(t0 + t1)t2
2 + (t2

1 + 2t
2
0)t2 � t

3
1 + t0t

2
1 � 2t

2
0t1 � t

3
0

t
3
2 � (t0 + t1)t2

2 + (t2
1 + 2t

2
0)t

3
2 + t0t

2
1 � 2t

2
0t1 + t

3
0

�t
3
2 + (t0 + t1)t2

2 � (t2
1 + 2t

2
0)t2 + 2t0t

2
1 � t

2
0t1 + 2t

3
0

(t1 � 2t0)t2
2 + (t2

1 � t
2
0)t2 + t

3
1 � t0t

2
1 + 2t

2
0t1 � 2t

3
1

1

CCCA
. ⇧

0.2.12 Remark. For a general low-degree hypersurface, there are no
techniques for disproving unrationality. However, unirationality has
been established only when deg( f ) = 2 and n > 2, deg( f ) = 3 and
n > 3, or n � deg( f ). For a fixed degree greater than 3, there are
many values of n for which unirationality is an open problem. In
contrast, a general degree d hypersurface in An(C) does not admit a
rational parametrization whenever d > n. For instance, the quartic
hypersurface V(x

4 + y
4 + z

4 � 1) in A3 lacks one.
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As an counterpart to affine subvarieties, this chapter develops the
theory of ideals in a polynomial ring. We introduce an analogue
of Euclidean division algorithm for multivariate polynomials. This
requires identifying the “leading term” of a polynomial.

1.0 Ideals

What are the basic algebraic objects?

1.0.0 Definition. A subset I of the ring S := K[x1, x2, . . . , xn] is an
ideal if it is nonempty and the relations r, s 2 S and f , g 2 I imply
that r f + s g 2 I. For any index set B, a system of generators for an
ideal I is a family { fb}b2B of polynomials such that fb 2 I, for all
b 2 B, and every element in I is a finite linear combination of the
generators fb with coefficients in S. An ideal is finitely generated if
it has a finite system of generators. The ideal generated by a family
{ fb}b2B is denoted

⌦
fb
↵

b2B .

An ideal is closed under finite linear
combinations where the coefficients are
taken from the ring.

1.0.1 Problem (Ideal membership). Given a finite set of polynomial
f1, f2, . . . , fm 2 S, decide whether a polynomial g 2 S belongs to the
ideal h f1, f2, . . . , fmi.

We will demonstrate that the ideal
membership problem has an solution by
developing a generalization of the row
reduction and the division algorithms.

1.0.2 Example. Since xz � y
2 = x(z � xy) + y(x

2 � y), the polynomial
xz � y

2 belongs to the ideal
⌦
y � x

2, z � xy
↵

in Q[x, y, z]. ⇧

1.0.3 Proposition. Let { fb}b2B be a family of polynomials in the ring S.

For any family {ga}a2A of polynomials in the ideal
⌦

fb
↵

b2B , the associated

affine subvarieties in An
satisfy V( fb | b 2 B) ✓ V(ga | a 2 A).

Proof. By hypothesis, we have ga 2
⌦

fb
↵

b2B for all a 2 A, so ga is
a finite linear combination of the generators with coefficients in S.
Hence, for each index a 2 A, there exists polynomials ha,b 2 S, for all
b 2 B, such that ga = Âb ha,b fb, where only finitely many of the hb,a
are nonzero. At every point in An where all the generators fb vanish,
we see that the polynomial ga also vanishes.

1.0.4 Corollary. The affine subvariety X := V( fb | b 2 B) only depends on

the ideal I :=
⌦

fb
↵

b2B . As a consequence, we write X = V(I).

1.0.5 Corollary. For any ideals I and J in S := K[x1, x2, . . . , xn] satisfying

I ✓ J, the associated affine subvarieties satisfy V(J) ✓ V(I).

The operator V sending ideals in S

to affine subvarieties in An reverses
inclusions.
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1.0.6 Definition. For any subset W ✓ An, the (vanishing) ideal of W

is I(W) := { f 2 S = K[x1, x2, . . . , xn] | f (a) = 0 for all a 2 W}. This
set is an ideal: for any r, s 2 S and any f , g 2 S that vanish on W, the
linear combination r f + s g also vanishes on W.

1.0.7 Examples.
(i) We have I

�
An(C)

�
= h0i and I(?) = h1i.

(ii) For a singleton (a1, a2, . . . , an) 2 An, one may show that

I
�
{(a1, a2, . . . , an)}

�
= hx1 � a1, x2 � a2, . . . , xn � ani .

(iii) For the subset W = {(1, 1), (2, 3)} ⇢ A2(Q), one verifies that

I(W) = h(x � 1)(y � 3), (x � 1)(x � 2), (y � 1)(x � 2), (y � 1)(y � 3)i
= h2x � y � 1, x

2 � 3x + 2i . ⇧

1.0.8 Lemma (Properties of vanishing ideals).
(i) For any ideal J in S := K[x1, x2, . . . , xn] and any subset W of An

, we

have the inclusions J ✓ I
�
V(J)

�
and W ✓ V

�
I(W)

�
.

(ii) For any nested subsets W ✓ X in An
, we have I(X) ✓ I(W).

(iii) For any subsets W and X in An
, we have I(W [ X) = I(W) \ I(X).

(iv) For any subset W of An
, we have V

�
I(W)

�
= W where W denotes the

Zariski closure of W.

(v) For any two affine subvarieties X and Y in An
, we have X = Y if and

only if I(X) = I(Y).

The inclusions in part (i) may be proper.
Since V(x

2, y
2) = {(0, 0)}, we have⌦

x
2, y

2↵ ⇢ I
�
V(x

2, y
2)
�
= hx, yi. For the

subset

W := {(a, b) | a
2 + b

2 = 1 and a 6= 0} ,

we have I(W) =
⌦

x
2 + y

2 � 1
↵

and
W ⇢ V

�
I(W)

�
.

Proof.

(i) Any polynomial in the ideal J vanishes at every point in V(J).
Similarly, every polynomial in I(W) vanishes at every point in
W.

(ii) Any polynomial vanishing on X must also vanish on W.
The operator I sending subsets in An to
ideals in S reverses inclusions.

(iii) A polynomial vanishes on W [ X if and only if it vanishes at
every point in W and every point in X.

(iv) Since V
�
I(W)

�
is Zariski closed, part (i) demonstrates that

W ✓ V
�
I(W)

�
. Conversely, there exists an ideal J in S such

that W = V(J). Since W ✓ W = V(J), parts (i)–(ii) imply
that J ✓ I

�
V(J)

�
✓ I(W). Using Corollary 1.0.5, we obtain

V
�
I(W)

�
✓ V(J) = W, so we conclude that V

�
I(W)

�
= W.

Restricting to affine subvarieties in An,
the operator I gives a one-sided inverse
to the operator V.

(v) Part (ii) shows that X = Y implies that I(X) = I(Y). For any
affine subvariety Z, part (iv) proves that V

�
I(Z)

�
= Z. Thus,

Corollary 1.0.5 yields the final statement follows.

1.1 Monomial Orders

To manipulate a multivariate polynomial, we must order its terms.
What order should we use?
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1.1.0 Definition. An ideal I in S := K[x1, x2, . . . , xn] is monomial if
there exists a subset A ✓ Nn such that I = hx

a | a 2 Ai.
A monomial ideal is generated by
monomials.

1.1.1 Lemma. Let I := hx
a | a 2 Ai be a monomial ideal. A monomial x

b

belongs to I if and only if x
b

is divisible by x
a

for some a 2 A.

Proof. The monomial x
b is a multiple of x

a for some a 2 A when
there exists c 2 Nn such that x

b = x
c

x
a, so x

b 2 I. Conversely, if
x

b = Âa2A ha x
a where ha 2 S and only finite many of the ha are

nonzero, then every term on the right side is divisible by some x
a 2 I.

Hence, the left side must have the same property.

1.1.2 Corollary. Two monomial ideals in S are equal if and only if they

contain the same monomials.

1.1.3 Lemma. For any monomial ideal I in S and any polynomial f 2 S, the

following are equivalent.

(a) The polynomial f belongs to I.

(b) Every term in the polynomial f lies in I.

(c) The polynomial f is a K-linear combination of monomials in I.

Sketch of proof. The implications (c) ) (b) ) (a) are trivial. The
implication (a) ) (c) is very similar to the proof of Lemma 1.1.1.

1.1.4 Theorem (Dickson lemma). Let n be a nonnegative integer. Every

monomial ideal in the ring S := K[x1, x2, . . . , xn] is finitely generated.

This result is commonly attributed to
Leonard Dickson who published it in
1913. However, it was certainly known
earlier; Paul Gordan used a variant in
1899 as part of his proof of the Hilbert
basis theorem.

Proof. Let I be a monomial ideal in S. We proceed by induction on n.
When n = 0, the statement is vacuous. When n = 1, the univariate
polynomial ring is a principal ideal domain and I is generated by
lowest degree monomial it contains.

Assume that n > 1. For each nonnegative integer i, consider the
monomial ideal Ji := hx

a | x
a

x
i
n 2 Ii in the smaller polynomial ring

K[x1, x2, . . . , xn�1]. The induction hypothesis implies that each Ji has
a finite generating set Bi and the monomial ideal J := hSi Bii has a
finite generating set B. Since B is finite, there exists a nonnegative
index m such that B ✓ B0 [ B1 [ · · · [ Bm. It suffices to show that
the finite set {x

a
x

i
n | x

a 2 Bi and 0 6 i 6 m} generates I. Consider a
monomial x

a
x

i
n 2 I. Since x

a 2 Ji = hBii, there is a monomial x
b 2 Bi

that divides x
a. If i 6 m, then the monomial x

b
x

i
n divides x

a
x

i
n. If

i > m, then there exists x
c 2 B such that x

c divides x
b and there

exists j 6 m and x
d 2 Bj such that x

d divides x
c. Thus, the monomial

x
d

x
j

n divides x
a

x
i
n.

1.1.5 Definition. A monomial order on the polynomial ring S is a total
order > on the set {x

u | u 2 Nn} of monomials such that
• for any x

u > x
v and any w 2 Nn, we have x

w
x

u = x
w+u > x

w+v;
• for all 1 6 i 6 n, we have xi > 1S.
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x >lex y
2 >lex yz >lex z

100

1.1.6 Definition. The lexicographic order is monomial order >lex on
S := K[x1, x2, . . . , xn] defined by x

u >lex x
v when the first nonzero

entry in u � v = (u1 � v1, u2 � v2, . . . , un � vn) is positive.

x
2 >glex xy >glex xz >glex y

2

1.1.7 Definition. The graded lexicographic order is the monomial order
>glex on S := K[x1, x2, . . . , xn] defined by x

u >glex x
v when either

|u| > |v| or |u| = |v| and x
u >lex x

v.

1.1.8 Definition. The graded reverse lexicographic order is the mono-
mial order >grevlex on S := K[x1, x2, . . . , xn] defined by x

u >grevlex x
v

when either |u| > |v| or |u| = |v| and the last nonzero entry in the
difference u � v = (u1 � v1, u2 � v2, . . . , un � vn) is negative.

x
2 >grevlex xy >grevlex y

2 >grevlex xz

The next result justifies the definition of a monomial ordering.

1.1.9 Proposition. For any total order on {x
u | u 2 Nn} compatible with

multiplication, the following conditions are equivalent.

(a) The relation > is a well-order (every nonempty subset has least ele-

ment);

(b) Every decreasing sequence x
u1 > x

u2 > x
u3 > · · · eventually

stabilizes;

(c) For all 1 6 i 6 n, we have xi > 1;

(d) For all u 2 Nn
such that u 6= 0, we have x

u > 1;

(e) When x
v

divides x
u

and v 6= u, we have x
u > x

v
.

Proof.

(a) ) (b): For any decreasing sequence x
u1 > x

u2 > x
u3 > · · · ,

the nonempty set {u1, u2, u3, . . . } has no smallest element, so the
relation > is not a well-order.

(b) ) (c): Suppose that 1 > xi for some 1 6 i 6 n. It follows that, for
all m 2 N, we have x

m

i
> x

m+1
i

, so 1 > x
i
> x

2
i
> x

3
i
> · · · is an

infinite decreasing sequence.
(c) ) (d): We proceed by induction on |u|. Part (c) gives the base

case |u| = 1. Next, write x
u = x

v
xi where v 2 Nn and 1 6 i 6 n. It

follows that x
u > x

v. Since |v| = |u|� 1, the induction hypothesis
implies that x

v > 1.
(d) ) (e): Suppose that ui > vi for all 1 6 i 6 n and u 6= v. Setting

w = u � v, we have x
w > 1 and x

u = x
w

x
v > x

v.
(e) ) (a): Let M be a nonempty set of monomials. By the Dickson

Lemma 1.1.4, there is a finite subset B ✓ M such that, for each
x

u 2 M, there is x
v 2 B that divides x

u. Part (e) ensures that
x

u > x
v or x

u = x
v. Thus, B contains the least element in M with

respect to the order >.

The graded lexicographic order is
like judging an actor by their best
movie whereas the graded reverse
lexicographic order is like judging an
actor by their worst movie.
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1.2 Division

How do we divide multivariate polynomials?

1.2.0 Definition. Fix a monomial order > on S := K[x1, x2, . . . , xn].
Any nonzero polynomial f 2 S can be written uniquely in the form
f = a1 x

u1 + a2 x
u2 + · · ·+ am x

um where and x
u1 > x

u2 > · · · > x
um

and a1, a2, . . . , am 2 K. We introduce the following terminology.
• The leading monomial of f is LM( f ) := x

u1 .
• The leading coefficient of f is LC( f ) := a1.
• The leading term of f is LT( f ) := LC( f ) LM( f ) = a1 x

u1 .

1.2.1 Example. Let f = y
4
z

3 + 2x
2
y

2
z

2 + 3x
5 + 4z

4 + 5y
2 in K[x, y, z].

Using the lexicographic order >lex, we have LM( f ) = x
5, LC( f ) = 3,

and LT( f ) = 3x
5. Under the graded lexicographic order >grevlex, it

follows that LM( f ) = y
4
z

3, LC( f ) = 1, and LT( f ) = y
4
z

3. ⇧

1.2.2 Theorem (Division algorithm). Fix a monomial order > on S and

let G := [g1 g2 · · · gm]
T

be an (m ⇥ 1)-matrix in S
m

. For any polynomial

f 2 S, there exists polynomials q1, q2, . . . , qm, r in S such that

f = q1 g1 + q2 g2 + · · ·+ qm gm + r ,

none of the monomials in r lie in the ideal hLM(g1), LM(g2), . . . , LM(gm)i,
and LM( f ) > LM(qj gj) for all 1 6 j 6 m.

The reminder r of the polynomial f

on division by the matrix G is often
denoted by f % G.

Proof. We establish the existence of the remainder r 2 S and the
matrix Q := [q1 q2 · · · qm] of quotient polynomials by giving an
algorithm.

input: A polynomial f 2 S and a matrix G := [g1 g2 · · · gm]
T.

output: The reminder r 2 S and the matrix Q := [q1 q2 · · · qm].

Set (r, p) := (0, f ).
For j from 1 to m do set qj := 0.
While p 6= 0 do

i := 1;
While (i 6 m) and LM(gi) does not divide LM(p) do

Set i := i + 1.
If i 6 m then (qi, p) :=

⇣
qi +

LT(p)
LT(gi)

, p � LT(p)
LT(gi)

gi

⌘

else (r, p) :=
�
r + LT(p), p � LT(p)

�
;

To demonstrate the correctness of this algorithm, we first show
that f = q1 g1 + q2 g2 + · · ·+ qm gm + p + r holds at every stage. It is
clearly true for the initial values. When LM(gi) divides LM(p), we
have

qi gi + p =

✓
qi +

LT(p)
LT(gi)

◆
gi +

✓
p � LT(p)

LT(gi)
gi

◆

and otherwise p + r =
�
r + LT(p)

�
+

�
p � LT(p)

�
.
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Since each term added to qi satisfies LM( f ) > LM(p)
LM(gi)

LM(gi), we
see that LM( f ) > LM(qj gj) for all 1 6 j 6 m. Similarly, a term
LT(p) is added to r only if the monomial LM(p) is not divisible by
an element of {LM(g1), LM(g2), . . . , LM(gm)}. Because the algorithm
halts when p = 0, we deduce that the output has the desired form.

The algorithm terminates because in each iteration of the main
loop we remove the lead term of p. As > is a monomial order, every
decreasing sequence of monomials eventually terminates.

1.2.3 Example. Consider f := x
3 + y

2 + 2z
2 + x + y + 1 2 Q[x, y, z] and

let > be a monomial order such that x > y > z. For the matrix [x y]T,
the division algorithm gives f = (x

2 + 1)x + (y + 1)y + 2z
2 + 1. ⇧

1.2.4 Example. Consider f := x
2
y 2 Q[x, y] and let > be a monomial

order such that x > y. For the matrix
⇥
xy � x x

2 � y
⇤

T, the division
algorithm yields f = x(xy � x) + (x

2 � y) + y. However, for the matrix⇥
x

2 � y xy � x
⇤

T, it yields f = y(x
2 � y) + 0(xy � x) + y

2. ⇧

In general, the reminder depends on the
monomial order and the order of the
entries in G.

1.2.5 Definition. For an ideal I in S, the leading term ideal LT(I) is the
monomial ideal generated by the leading terms of all elements in the
ideal I, so we have LT(I) := hLT( f ) | f 2 Ii.

1.2.6 Example. Let > be a monomial order on Q[x, y] such that x > y.
For the ideal I :=

⌦
x

2 � y, xy � x
↵
, we clearly have hx

2, xyi ✓ LT(I).
The equation x(xy � x) + (1 � y)(x

2 � y) = y
2 � y 2 I also shows that

y
2 2 LT(I). How can one verify that LT(I) = hx

2, xy, y
2i? ⇧

1.2.7 Definition. For an ideal I in S, a finite collection g1, g2, . . . , gm of
polynomials in I is a Gröbner basis if

LT(I) = hLT(g1), LT(g2), . . . , LT(gm)i .

Saying g1, g2, . . . , gm is a Gröbner basis means that the polynomials
form a Gröbner basis of the ideal hg1, g2, . . . , gmi.

A Gröbner basis implicitly depends on
the choice of a monomial order.

1.2.8 Examples. The generator of a principal ideal in a polynomial ring
is a Gröbner basis. Any set of monomials is a Gröbner basis. Under
any monomial order on K[x, y], one can show that the polynomials
y

2 � y, xy � x, x
2 � y form a Gröbner basis. ⇧

1.2.9 Proposition. Fix a monomial order on the polynomial ring S. Every

ideal in S has admits a Gröbner basis.

Proof. Let I be an ideal in S. The leading term ideal LT(I) is gener-
ated by the monomials LM( f ) for all f 2 I. The Dickson Lemma 1.1.4
shows that LT(I) is finitely generated. It follows that there are
g1, g2, . . . , gm 2 I such that LT(I) = hLM(g1), LM(g2), . . . , LM(gm)i.
The polynomials g1, g2, . . . , gm form a Gröbner basis for I.


