3 Computations

Grobner basis computation is one of the main practical tools for
solving systems of polynomial equations and computing the images
of algebraic varieties under projections or rational maps.

3.0 Buchberger’s Algorithm

How does one find or construct a Grobner basis? We describe a
method for transforming a generator set of a polynomial ideal into
a Grobner basis. This procedure is a common generalization of the
Euclidean division algorithm and the row-reduction algorithm from
linear algebra.

3.0.0 Algorithm (Buchberger).
input: a monomial order on the ring S:=KJxy,x2,...,x,] and
generators ¢1,92,...,9m for an ideal in S
output: a Grobner basis for the ideal (g1,82...,8m)
Set G:=1[g1 & * 8m].
Set P:={(gj, ) | 1<j<k<mj.
While P # @ do
Choose (gj,8k) € P.

Set P:= iP\{(g]-,gk)}.
Set h:=spoly(gj,gx) % G.

If h#0 then
Set P:=PU{(g h)|g appears in a column of G}.
Set G:=[G #H].

Return the columns of G.

Proof of correctness. The Buchberger Criterion 2.2.2 shows that the
output is a Grobner basis. The algorithm terminates because the ring
S is noetherian and each step which adds an & creates a larger ideal:

(LT(g1),LT(g2), -, LT(gm)) C(LT(g1),LT(g2), - - -, LT(gm), LT(R)) . O

3.0.1 Problem. Compute a Grobner basis of the ideal (x?> — y, x> — z) in
the polynomial ring Q[x, y, z] under the lexicographic order.

Solution. Set g1:= x> —y, g2:= x> — z, and I:= (g1, g2). We have

spoly(g1,82) =xg1— g2 = —xy +z.
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How one chooses the pairs (g;,gx) € P
can have a dramatic effect on the speed
of the algorithm.

Worst-case analysis shows that the
computation of Grobner bases can be
very expensive. The degrees of all the
polynomials occurring during the
Buchberger algorithm are bounded by a
function of the form O((nd)(”*'l)znﬂ)
where d is the maximum of the degrees
of the input polynomials and # is the
number of variables. Despite this,
Grobner bases are often computable in
practice.
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Its leading term is not contained in the ideal (LM(g7), LM(g2)) = (x?),
so we add g3:= xy — z to our generating set G = [g1 &2 3] We also
have spoly(g1, g3T: y g1 — xg3 = xz — y*. Again, its leading term is
not in (LM(g1), LM(g2), LM(g3)) = (x2, xy), so we add g4:= xz — y* to
our generating set G = [¢1 &2 &3 $4]. Continuing, we obtain

spoly(g2,83) =y —x* g3 =X’z —yz =241
spoly(g1,84) =281 — X8 = Xy* — Yz =Y g3
spoly(g2,84) =282 —X* 8 = Xy* =2 = > g1 + (v’ — 2°);

for all three of these S-polynomials, the remainder on division by G
is zero. Since LT(y® — z?) = y? is not contained in the ideal

(LM(g1),LM(g2), LM(g3), LM(g4)) = (¥, xy, xz) ,

we add g5:= y> — 2% to our generating set. Lastly, we have

spoly(g3,84) =283 —yga =y — 2> = g5
spoly(g1,85) = y° 81 —X° 85 = X2 —y° =2° 81 — ¥ gs
spoly(g2,85) = 1° o — g5 = x°2 — Pz =22 g + 2 g5
spoly(g3,85) = y* 83 — X85 = x22 — Y’z =284

( )

3

spoly(gs4,85) =y> g4 — X285 =x2° —y° = 2> g4 — ¥ &5.

: 2, .3 _ 2.3 .2
Thus, the polynomials x* — y, x> — z,xy — z,xz — y°,y° — z~ from a Since g» — x g1 + g3, e can omit g3 to

Grobner basis for the ideal (x2 -V, X3 — Z> . O obtain a smaller Grobner basis.

3.0.2 Definition. A Grobner basis g1, 92, ..., gm is minimal if g # 0,
forall 1 < k < m, and the relation j # k implies that LM(g;) does
not divide LM(gx). Moreover, this Grobner basis is reduced if it is
minimal, LC(g) = 1, and none of the monomials in g — LT(g)
belong to the ideal (LT(g1),LT(g2),...,LT(gm)), forall 1 < k < m.

3.0.3 Proposition. For any monomial order on the polynomial ring S, there
exists a unique reduced Grobner basis for every ideal in S.

Sketch of proof. Let g1,82, ...,9m be a Grobner basis of the ideal I.
(existence) Suppose that LT(g;) is divisible by LT(g). It follows that

LT(I) :<LT(g1),LT(g2),. . .,LT(g]-_l),LT(ng),. . .,LT(gm)>. Since
the remainder of

Spoly(g),g) = s g — 81
POVIE 8 T IC(g) ¥ ™ () &

on division by g1,$2, - +8i~1s&j+1s- -+ &m is zero, we deduce that
(81,82 ,8i—1/8j41/ - - .,gm) = I. We obtain a small Grobner
basis for I by omitting g;. Therefore, we may assume without loss
of generality that our Grobner basis is minimal.
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For some 1 < j < m, set

rj=gi% (81 & v i1 §j+1 - gm]".
Since LT(gj) # (LT(g1), LT(g2), .-, LT(8; 1), LT(gj1),- -, LT(gm) ),
we see that LT(g]-) = LT(r]-). Thus, §1,82, -+, 81, 1j,§j+1- -+, §m IS
a Grobner basis for I. Because “being reduced” only depends on
the leading monomials (which this process doesn’t alter), we may
repeat this process until we obtain a reduced Grobner basis.

(uniqueness) Suppose that g1, 92,...,9m and f1, fo, ..., f are re-
duced Grobner bases for I. For any 1 < j < m, there exists an
index k such that LM(g;) = LM(f). Since g; — fi € I, we have

(g —f)%[g1 &2 -+ gm]' =0.

The leading terms cancel and the remaining terms are divisible by
none of the monomials in LT(I), so we must have g; — fy =0. [

3.0.4 Examples. The polynomials x> — y, xy — z,xz — y?,y> — 22
form the reduced Grobner basis with respect to >1.,. However, the
polynomials x> — y, xy — z,y> — xz form the reduced Grobner basis for
the same ideal with respect to >greyiex- o

3.1 Macaulay2

Developed by Daniel Grayson and Michael Stillman, Macaulay2 is
a open-source software system devoted to supporting research in
algebraic geometry and commutative algebra. Documentation can
be found at www.math.uiuc.edu/Macaulay2/. A convenient online
version can be found at www.unimelb-macaulay2.cloud.edu.au/.

Basic numerical operations are quite intuitive.

Macaulay2, version 1.21

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
Isomorphism, LLLBases, MinimalPrimes, OnlinelLookup,
PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

il @ 242

ol =14

12 1x2x3%4

02 = 24

i3 : 27199

03 = 803469022129495137770981046170581301261101496891396417650688
i4 : 42!

04 = 1405006117752879898543142606244511569936384000000000
i5 1 1;2;3%4

o7 = 12

i8 : 4x5

08 = 20

25
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i9
09

09 :
i10 :

010

i1l :

oll

i12

0l2

i13 :

0l3

il4 :

0l4

i15 :

ol5

We can also make functions in Macaulay2.
i16 :

0l6

016 :
117

0l7

i18 :

018

0l8 :
i19 :

ol9

To work with polynomials, we must first define the ambient ring.
i20 :

020

020 :
i21 :

021

021 :
i22

022

022 :
i23 :

023

023 :
i24 :

024
i25
025

025 :
i26 :

026

026
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o

I
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=1
05+1
=2

f=1i->1"3

= f
FunctionClosure
f5

= 125

g = (x,y) -> xxy
=9
FunctionClosure
g(6,9)

= 54

S = 7Z/5[x,y,z]
=S
PolynomialRing
(x+y)”"5

5
+y

(S,

|
wn

MG‘OU)I—'I—'MX
9]

numgens S
=3

: gens S

= {x, y, z}
List

vars S
=l xyz|

1 3
: Matrix S <---'S
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i27 : coefficientRing S

7z
027 = --
5

027 : QuotientRing
i28 : random(3, S)

3 2 2 3 2 2 2
028 = - X - XY - Xky + Y + X Z - 2Xky*zZ + XxZ - 2y*¥zZ + 2z
028 : S
i29 : basis(2, S)
029 = | X2 Xy Xz y2 yz z2 |

1 6
029 : Matrix S <--- 'S

Every polynomial ring in Macaulayz is equipped with a monomial

order.
i30 : S = 7ZZ/101[a,b,c]
030 =S

030 : PolynomialRing
i31 : (a+b+c+1)"3

3 2 2 3 2 2 2 2 3 2
031 = a__+ 3a_ b + 3axb__+ b__+ 3a_c_+ 6axbxc_ + 3b_c + 3axc_ _+ 3bxc__+.c__+ 33 _+.
2 2
6axb + 3b + 6axc + 6bxc + 3¢ + 3a + 3b + 3c +1
o3l : S

Explicit comparison of monomials with respect to the chosen order-
ing is possible.

i32 : b2 > axc

032 = true

The comparison operator ? returns a symbol indicating the result
of the comparison: the convention is that the larger monomials are
printed first (leftmost).

i33 : b"2 ? axc

033 = >

033 : Keyword

The monomial ordering is also used when sorting lists with sort.
i34 : sort { 1_.S, a, a™2, b, b”2, axb, a3, b"3}

2 2 3 3
034 = {1, b, a, b, axb, a , b, a}

034 : List
Describe the default monomial ordering used in Macaulay2. The next
ring uses optional argument MonomialOrder to specify lexicographic

ordering.
i35 : S = 7ZZ/101[a,b,c, MonomialOrder => Lex];
i36 : (a+b+c+1)"3

3 2 2 2 2 2 3
a_+ 3a b + 3a c + 3a__+ 3axb__+ 6axbxc + 6axb + 3axc_+ 6axc + 3a_ + b_ _+

o

w

(o))
1}

2 2 2 3 2
3b ¢ + 3b + 3bxc + 6bxc + 3b + c + 3c +3c+1
036 : S

How would you describe the following monomial orders?
i37 : S = 7Z/101[a,b,c, MonomialOrder => Eliminate 21];

27
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i38 : (a+b+c+1)"3
3 2 2 3 2 2 2 2 2
038 = a__+_3a_b_+ 3axb__+ b__+ 3a_c_+_ 6axbxc + 3b_c_+ 3a__+ 6axb + 3b__+ 3axc_ _+.
3bxc + 6axc + 6bxc + 3a + 3b + c3 +3c +3c+1
038 : S
i39 : S = Z7Z/101[a,b,c, MonomialOrder => ProductOrder{1,2}];
i40 : (a+b+c+1)"3
3 2 2 2 2 2 3
040 = a__+_3a_b_+_3a_c_+_ 3a__+_ 3axb__+_6axbxc_+ 3axc__+ Baxb_+ Gaxc_+ 3a_+ b _+__
2 2 3 2 2
3b ¢ + 3bxc + ¢ + 3b + 6bxc + 3c + 3b + 3c + 1
040 : S
i41 : S = ZZ/101[a,b,c, Degrees => {1,2,3}];
i42 : (a+b+c+1)"3
3 2 2 2 3 2 2 2 2
042 = ¢__+_ 3bxc__+_ 3b_c_+_ 3axc__+_b__+_ 6axbxc + 3c__+ 3axb__+ 3a_c_+ 6bxc + 3ab
+ 3b2 + 6axC + a3 + 6axb + 3c + 3a2 +3b +3a+1
042 : S

The division algorithm discussed in class can be implemented in

Macaulay2 as follows:

i43 :

043 =
043 :

division = (f, G) -> (

S := rlng f;
p =
r := O,S,
m := #G;
Q := new MutableHashTable;
for j from 0 to m-1 do O#J = 0_S;
while p I= 0 do (
i:=0;

whlle i < m and leadTerm(p) % leadTerm(G#i) != 0 do i = i+1;
if i < m then (

Q#i = Q#i + (leadTerm(p) // leadTerm(G#i));

p=p - (leadTerm(p) // leadTerm(G#i) * G#i)

)
else (

r

p
)

r + leadTerm(p);
p - leadTerm(p)

);
L := apply(m, j -> Q#j);
(r, L)

division
FunctionClosure

What does the following input do?

i44 :

044

044 :

i45

045 =
045 :

f = x"2xy
2

=Xy
77
--[x..z]

: Gl = {xxy-x, x"2-x}

{x*xy - x, x - x}
List
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i46 : G2 = {x"2-y, x*xy-x}

046 = {x2 -y, xxy - x}

046 : List

i47 : division(f, G1)

047 = (x, {x, 1})

047 : Sequence

i48 : f % matrix{Gl}, f // matrix{G1l}

048 = (x, {2} | x |)
{2y [ 1]

048 : Sequence

i49 : gens gb ideal G1

049 = | xy-x x2-x |

YA

049 : Matrix (--[x..z]) <--- (--[x..z])
5

i50 : division(f, G2)

2
050 = (y , {y, 0})
050 : Sequence
i51 : f % matrix{G2}, f // matrix{G2}

051 = (y, {2} | 1)
{2}y | x|
051 : Sequence
i52 : gens gb ideal G2
052 = | y2-y xy-x x2-y |
7z 1 7z 3
052 : Matrix (--[x..z]) <--- (--[x..z])
5 5
The next example illustrates how the monomial order can affect the
length and complexity of a Grobner basis computation.
i53 : S = QQIx,y,zl;
i54 : I ideal (x*7+y"6+z"5-1, x™4+y"3+z"°2-1);
054 : Ideal of S

i55 : time gens gb I;
-- used 0.000455786 seconds

1 4
055 : Matrix S <--- S
i56 : numColumns oo

056 = 4
i57 : S’ = QQ[x,y,z, MonomialOrder => Lex];
i58 : I' = ideal(x*7+y"6+z"5-1, x™4+y~3+z72-1);

058 : Ideal of S’
i59 : time gens gb I’';
-- used 0.0333673 seconds

1 9
059 : Matrix S’ <--- S’

i60 : numColumns oo
060 = 9
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Which affine subvarieties do the following ideals define?
i6l : S = QQIx,y,zl;

i62 : I ideal(xx*y, xxz)

062 = ideal (xxy, xx*z)

062 : Ideal of S

163 : decompose(I)

063 = {ideal x, ideal (z, y)}

063 : List

i64 : I == intersect(o00)

064 = true

i65 : clearAll

i66 : n =4

066 = 4

i67 : S = QQ[x_1..x_n];

i68 : M = matrix table(n, n, (j,k) -> S_j"k)

068 = | 1 x.1 x_ 172 x_ 173 |
| 1 x.2 x.272 x.2"3 |
| 1 x.3 x_3"2 x_373 |
| 1 x4 x_472 x_4"3 |

4

4
068 : Matrix S <--- S

i69 : factor det M
069 = (X - X )(x - Xx)(x -x)(x -x)(x -x)(x -x)
3 4 2 3 1 4 1 3 1 2

069 : Expression of class Product

i70 : S = QQ[a..i];
i71 : M = genericMatrix(S,a,3,3)
071 = | adg |

| beh|

| ¢ fi]

) 3 3
071 : Matrix S <--- S

i72 : I = ideal det M

072 = ideal(- cxexg + bxfxg + cxd+*h - axfxh - bxdxi + axexi)
072 : Ideal of S

i73 : J = minors(2, M);

073 : Ideal of S

i74 : mingens J

074 = | fh-ei ch-bi fg-di eg-dh cg-ai bg-ah ce-bf cd-af bd-ae |
1 9
074 : Matrix S <--- S
i75 : S =0QQ[t,a..i];
i76 : M = genericMatrix(S,a,3,3)
076 = | adg |
| beh]|
| ¢ f1i]
i 3 3
076 : Matrix S <--- S
i77 : Mt = t*id_(S"3) - M
077 = | t-a -d -g |
| -b t-e -h |
| -c¢ -f t-i |

3 3
o077 : Matrix S <--- S
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i78 : I = ideal substitute(
contract(matrix{{t"2, t,1}}, det(Mt)),
{t => 0_S});

078 : Ideal of S
i79 : transpose gens I

079 = {-1} | -a-e-1i |
{-2} | -bd+ae-cg-fh+ai+ei
{-3} | ceg-bfg-cdh+afh+bdi-aei |

3 1
079 : Matrix S <--- S

3.2 Solving Systems

How do Grobner bases help with finding solutions to a system of
polynomial equations?

3.2.0 Problem. Determine all complex solutions to the following
system of equations: x> +y+z=1,x+y*+z=1,x+y+2z>=1.

Solution. Set I:'= (x> +y+z—1,x+y*+z—1,x+y+2z>—1). The
reduced Grobner basis of I with respect to >y is

20— 4zt 1428 - 22y + 0528 0522, —y— 2tz x+ Pz 1.

Since z0 — 4z* +4z% — 22 = z2(z — 1)?(z% + 2z — 1), the possible z’s are
0,1 and —1 =+ /2. Substituting these values into y> —y — z> +z = 0
and yz? + 0.5z* — 0.5z = 0, we can determine the possible y’s.
Similarly, the equation x + y? + z = 1 gives the corresponding x’s. In
this way, one checks that the equations have exactly five solutions:

(-1+v2,-1+V2,-1+V2), (1,0,0), (0,0,1).
(-1-v2,-1-v2,-1-v2),  (0,1,0), O

Why could we find these solutions? There are two key features.

(elimination) We could find a consequence of the given polynomial
equations that involved only one variable.

(extension) Having solved the equation in one variable, we could
extend these solutions to the given polynomial equations.

We first focus on elimination theory.

3.2.1 Definition. An elimination order for the variables x1, x5, ...,x,; on
the ring R:= K[x1,x2,...,Xu,Y1,Y2,...,Ym| is a monomial order such
that any polynomial in R, whose leading term belongs to the subring
Kly1,Y2,---,Ym), is itself contained in K[y1,y2, ..., Ym].

3.2.2 Example. Lexicographic order on R satisfying x; > y;, for all i
and j, is an elimination order for the variables x1,x3, ..., xy. o

3.2.3 Example. Fix monomials orders >, and >, on K[xy,x2, ..., X,]
and K[y1,y2, ..., ym| respectively. The product order on the larger

31



32 Introduction to Algebraic Geometry

polynomial ring K[x1, x2, ..., Xu,Y1,Y2, - ., Ym|, defined by declaring
that xy* > x"y” whenever x* >, x* or x* = x* and y" >y, y°, is an
elimination order. o

3.2.4 Theorem (Elimination). Fix an elimination order > on the ring
R:=K[x1,X2,...,Xn,Y1,Y2,- - -, Ym] for the variables x1,x,,...,xy. For
any Grobner basis of an ideal 1 in R with respect to >, the subset lying in
Kly1,Y2,---,Ym] forms a Gribner basis for the ideal I N K[y1,Y2, ..., Ym] in
the subring K[y1,y2, - -, Ym)-

Proof. Let g1,82,...,8¢ € R be a Grobner basis of the ideal I relative
to given elimination order >. Set | := I N K[y, y2,...,Ym| and, for
some 1 < k < 4, let g, Sk+1, - - -, ¢ be the elements in the Grobner
basis lying in the subring Ky1, 2, ..., Ym]. Since gk, Sk+1,---,8¢ € J,
it is enough to show that LT(J) C (LT(gx), LT(gx+1),---,LT(g¢))-

We need only prove that the leading term LT(f), for any f € J, is
divisible by LT(g;) for some k < j < ¢. A polynomial f € ] lies in
I, so its leading term LT(f) is divisible by LT(g;) for some 1 < j < £.
As f € ], the leading term LT(g;) lies in the subring K[y1,y2, .- ., Ym]-
From the defining property of an elimination order, we see that
g € Kly1,¥2,--.,Ym], so we have k < j < /L. O

The ideal I N K]y, Y2, ..., Ym] has a geometric interpretation.

3.2.5 Theorem (Closure). Let K be an algebraically closed field and let
X C A" be an affine subvariety with I := 1(X). For the projection map
T AT — A" defined by

(xlzle-~-/xn/]/1/]/2/-~/]/m) — (]/1/]/2/--'/]/111)/

we have 1(X) = V(INK[y1,y2, ..., Ym])- u

3.2.6 Definition. Let X be an affine subvariety in A". The graph Z
of a polynomial map p: X — A" is the locus {(a,p(a)) |a € A"}
in X x A". The graph Z comes with two maps 771: Z — X and
my: Z — A" given by (x1,X2, ..., Xn, Y1, Y2, -, Ym) — (X1, X2, .., Xn)
and (x1,%2, ..., X, Y1, Y2, -, Ym) — (Y1,Y2,...,Ym) respectively. The
map 711 is invertible and 712 (Z) = p(X).

3.2.7 Proposition (Graphs as subvarieties). For any polynomial map
p: X C A" — A" with graph Z C A", we have Z = V (1(Z)) and

(Z) =i (I(X)) +(y1 — p1,Y2 — P2, - - Y — P -

Proof. The inclusions Z C X x A" C A" x A" = A" imply that
i (I(X)) C1(Z). For any point a:= (ay,4ay,...,a,) € X, we have

p(a) = (p1(ar,az, ..., an),02(a0,02,...,an),, ..., pm(a1,42,...,42)),

Copyright © 2023 by Gregory G. Smith

The monomial order on the subring
K(y1,Y2, ..., Ym] is inherited from the
elimination order on K[y1,y2, ..., Ym]-

To utilize the algebraically closed
hypothesis, we need another result, so
we postpone presenting the proof.

ZCXxA"

X A"

For any f € K[xq,x2,..., 5], let 75 (f)
denote the same polynomial regarded
as an element in the larger ring
K[x1,X2, -, X0, Y1, Y2, - - -, Yn)-
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so the polynomial y; — p; vanishes at (a,p(a)) for all 1 < j < m. Hence,
we have I(Z) D 75 (I(X)) +(y1 — p1,¥2 — 02, - - -, Ym — Prm)-

The Buchberger criteria establish that the polynomial generators
Y1 —pP1,Y2 — P2, --.,Ym — pm form a Grobner basis with respect to the
lexicographic order where

YIS Yo > oo > Yy > X > X > 00 > Xy

The remainders modulo this ideal lie in the subring K[x1, x, ..., x,].
For any polynomial f in the subring K[x1, xy, ..., x,] that vanishes
on Z, we deduce that f € I(X). Therefore, we have the opposite
inclusion I(Z) C 75 (I(X)) +{v1 — p1, Y2 — P2, - - - Y — Prm)-

Finally, suppose that (a,b) € V(I(Z)). Since 7} (I(X)) C I(Z), it
follows that V(I(Z)) C 7r;(X) and a € X. Moreover, the equations
yj = pj, forall 1 < j < m, imply that b = p(a) and (a,b) € Z. O



