1.2 Subgroups

A substructure is one of the most basic ideas in algebra. Applying
the philosophy of reductionism, one understands algebraic objects
by describing their substructures.

1.2.1 Definition. Let G be a group. A subset H of G is a subgroup if
the restriction of the operation on G is a group operation on H.

1.2.2 Lemma. A nonempty subset H of a group G is a subgroup if and
only if, forallg,h € H, we havegh™' € H.

Proof.

(=) Since H is a group, each element in H has an inverse and the
product of two elements is an element in H.

(«) Since associativity is inherited from the group G, the binary
operation on G induces a group structure on H if and only if
the following three conditions are satisfied.

(closure) For all g, h € H, the product g h belongs to H.

(identity) The identity element e € G belongs to H.

(inverse) For all h € H, the inverse h~! belongs to H.
Since H is nonempty, there exists h € H,soe = hh~! € H. For
allh € H, we have h™! = eh™! € H. Finally, if g,h € H, then
we have gh = g(h~!)~1 € H. O

1.2.3 Example. Each inclusion in the chains Z ¢ Q@ ¢ R c C and
U, C S' c C* defines a subgroup. Although the nonzero rational
numbers Q" form a group under multiplication, this subsetis nota
subgroup of the rational numbers. <>

1.2.4 Example. The special linear group
SL(n,R) := {real (n X n)-matrices A such that det(A) = 1}

is a subgroup of GL(n, R) because the determinant of a product is
the product of determinants. <>

1.2.5 Proposition. LetX be a subset of a group G. The set of elements in
G that commute with all of the elements in X forms a subgroup of G. This
subgroup is called the centralizer of X in G and is denoted by Cg(X).

Proof. An element g € G lies in the centralizer C;(X) if and only if,
forallx e X,wehavegx = xgeo x =g 'xge x=gxg ' Given
two elements f, g € C;(X), we see that

(fegH'x(fgH)=gf'xfg'=gxgl=x
forall x € S. Thus, Lemma 1.2.2 shows that C;(X) is asubgroup. [

1.2.6 Definition. The center of a group G is the centralizer of the
group itself; Z(G) = Cg(G) ={ge G : fg=gfforall f € G.
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For any group G, the set G itself is
a subgroup of G and the subset {¢}
consisting of the only the identity
element is a subgroup of G.

A group G is abelian if and only if it is
equal to it center; Z(G) = G.
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The group u;, of nth roots of unity
is cyclic, generated by ¢ := e?7i/n,
Corollary 1.1.5 establishes that the
symmetric group ©,, is generated by
the (%) transpositions.

Proposition 1.1.1 proves that &, has
order n!. The group u, has order n
and the Klein 4-group has order 4.

1.2.7 Lemma. For any family{H; | j € J} of subgroups of a group G, the

intersection H := ﬂje] H, is also a subgroup of G.

Proof. Since e € H; for all j € I, it follows that H # @. Suppose that
f>& € H. The definition of the intersection implies that f, g € H;
for all j € J. Since H; is a subgroup of G, we deduce that f g~! € H;
for all j € J. Thus, we conclude that fg=! € H and Lemma 1.2.2
shows that H is a subgroup of G. O

1.2.8 Definition. For any subset X of a group G, the subgroup gen-
erated by X, denoted by (X), is the intersection of all subgroups of
G that contain X. The group G is finitely generated if there exists a
finite subset X such that G = (X). Similarly, the group G is cyclic if
there exists an element g € G such that G = ({g}).

1.2.9 Definition. The order |G| of a group G is the cardinality of its
underlying set.

1.2.10 Lemma. LetG be a group. Fix an elementg € G and set H := (g).
(i) The cyclic subgroup H has infinite order if and only if, for all positive
integers n, we have g"* # e.
(ii) When the subgroup H has finite order, the order |H| is the smallest
positive integer m such that g™ = e.
(iii) There exists a positive integer k such that g = e if and only if the
order |H| divides k.

Proof.

(i) (=) If there were positive integers r and s such that 7 < s and
g" = g%, then we would have g°=" = e which contradicts
our hypothesis. We conclude that [{g" | n € N}| = |N]| so
the cyclic subgroup H has infinite order.

(<) Suppose there is a positive integer n such that g" = e. For
any integer s, there are integers g and r such thats = qn+r
and 0 < r < n. It follows that g8 = g?"*" = (g")ig" = g".
We deduce that H C {e, g, g2, ...,2" '}, so the group H has
finite order.

(ii) Let m be the minimum positive integer such that a™ = e. If we
were to have g" = g’ for some 0 < r < s < m — 1, then we would
obtain g°~" = e contradicting our choice of m. Hence, we must
have H = {e, g,...,g" '}

(iii) Suppose that g = e and set m := |H|. There exists integers
q and r such that k = gm + r with 0 < r < m. Since we have
e =gk = gin+r = (g")4g" = g", part (ii) implies that r = 0. [J

1.2.11 Remark. The order of an element g € G, which by definition
is the cardinality of the subgroup it generates, equals the smallest
positive integer m such that g™ = e.



1.3 Automorphism Groups

Why would any sensible person introduce the abstract concept of a
group? In practice, groups arise as the symmetries of some object.

1.3.1 Definition. A morphism is a structure-preserving map from
one object to another having the same mathematical structure. We
write ¢ : X — Y for a morphism ¢ with source X and target Y. The
composition of two morphisms ¢ and v is defined precisely when
the target of ¢ is the source of ¢. Composition satisfies two axioms:
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(associativity) For any three morphisms w: W - X, ¢: X - Y,and¢y:Y - Z,

we have Yo (pow) = (YPop)ow.

(identity) For every object X, there exists a morphism idy : X — X, called the
identity morphism on X such that, for any morphism ¢ : X —» Y, we

haveidyop = ¢ = @ oidy.

1.3.2 Example. A morphism between sets is an arbitrary map, be-
tween vector spaces is a linear map, between topological spaces is
a continuous function, and between differentiable manifolds is dif-
ferentiable function. <

1.3.3 Definition. A morphism ¢ : X — Y is an isomorphism if there
exists a morphism 3 : Y - X such that o ¢ = idy and ¢ o 3 = idy.
An automorphism is an isomorphism whose source and target are
identical.

1.3.4 Example. Anisomorphism between sets is a bijective map, be-
tween vector spaces is an invertible linear map, between topological
spaces is a homeomorphism, and between differential manifolds is
a diffeomorphism. <>

As follows immediately from the definitions, the automorphisms
of a given mathematical object form a group.

1.3.5 Definition. The automorphism group of a mathematical object
X is the group consisting of all automorphisms of X.

1.3.6 Example. The automorphism group of a set X is precisely the
symmetric group ©y. <&

1.3.7 Example. For any positive integer n, the dihedral group D,, is
the automorphism group of a regular polygon with n edges. The
group D, has order 2n because a regular polygon with n edges has
2n different automorphisms, namely n rotational symmetries and
n reflection symmetries. <>

1.3.8 Example. The orthogonal group, which is defined to be

O(n,R):={A € GL(n,R) | ATA =T},
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Figure 1.5: An illustration of the 10
elements in the dihedral group D5
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The dihedral group Dy, is a finite
subgroup of O(2, R).

Y|

Figure 1.6: The Cayley diagram of the
Klein group

Figure 1.7: The Cayley diagram of ©;

In geometric group theory, one
identifies the colour classes of ¢ and
¢! to convert the directed graph into
a graph. This graph is endowed with
the structure of a metric space.

consists of the distance-preserving linear maps on the Euclidean

space R" because ||[Av|? = (AV)T(AvV) = VIATAV = v'v = |[v|]
Thus, the orthogonal group O(n, R) is the automorphism group of
the normed vector space R". <>

To justify the group axioms, we demonstrate that every group is
the automorphism group of some mathematical object. To reduce
the mathematical prerequisites, we use directed graphs.

1.3.9 Definition. An automorphism of an edge-coloured directed
graph is a permutation o of its vertex set such that an ordered pair
of vertices (u, v) forms an arrow from u to v that is assigned the
coloured c if and only if the ordered pair (o(u), o(v)) forms an arrow
from o(u) to o(v) that is assigned the coloured c.

1.3.10 Theorem. Every group is the automorphism group of some edge-
coloured directed graph.

Proof. Let G be a group. The Cayley diagram T of this group is the
edge-coloured directed graph constructed as follows:
« The vertex set V(I') is identified with the underlying set of the

group G.

« Each arrow is assigned a colour from the set G \ {e}.
« Forallv e V(I') and all ¢ € G \ {e}, the ordered pair (v, vc) forms

an arrow from v to vc that is assigned the coloured c.

By design, the colour of an arrow (v, vc) in I’ can be reconstructed
from the appropriate product its tail and head: v='(vc) = ¢. We
claim that the group G is the automorphism group Aut(T).

We first show that each element in the group G determines an
automorphism of the Cayley diagram I". For any g € G, consider
the map A, : V(T') —» V(T') defined by 1,(v) := gv. The associativity
property of the group G establishes that, for all g,h € G, we have
lg Olh = /‘Igh' Since lg OAg—l = /‘le = idV(I‘) and )lg—l O/lg = /‘te = idV(l")a
the map 4, is a permutation of the set V'(T'). Since each element in
G has an inverse, it follows that the ordered pair (v, vc) is an arrow
in T coloured c if and only if the ordered pair 44(v, vc) = (gv, guc)
is an arrow in I" coloured c.

For the other direction, suppose that ¢ is an automorphism of
Cayley diagram T'. For all ¢ € G \ {e}, the ordered pair (e, c) is an
arrow in T coloured c if and only if the ordered pair (o(e), o(c)) is
an arrow in I coloured c. Hence, we deduce that (g(e))~'o(c) = ¢
or a(c) = a(e) ¢, so we conclude that o = A). O

1.3.11 Remark. There are many other universality results proving
that all groups arise as the automorphism groups of some specific
mathematical structure (including graphs, strongly regular graphs,
lattices, and fields).



