1.4 Group Homomorphisms

Recognizing the maps that perserve a given mathematical structure
allows one to compare objects and identify equivalence ones.

1.4.1 Definition. Let (G, %) and (H, *) be two groups; the notation
distinguishes the two group operations. A group homomorphism is
amap ¢ : G — H such that o(f x g) = ¢(f) = p(g) forall f,g € G.

1.4.2 Example. Foralln € N, themap det : GL(n, R) — R™isa group
homomorphism, because the determinant of a matrix product is
the product of the determinants <

1.4.3 Example. For all n € N, the sign map sgn: ©, — u, is a group
homomorphism. <>

1.4.4 Example. For any subgroup H of a group G, the inclusion map
t: H — Gis agroup homomorphism. <&

1.4.5 Lemma. Letyp: G - H a group homomorphism.
(i) A group homomorphism maps the identity element in its source to
the identity element in its target; ¢(eg) = ey.
(ii) A group homomorphism maps inverses to inverses; for allg € G, we
have p(g~") = (p(g))~"
(iii) Foralln € Z and allg € G, we have p(g") = (¢(g))".

Proof.
(i) The identity axiom for a group and the definition of a group
homomorphism give p(eg) = p(eg*eg) = p(eg)+@(eg). Since

the element ¢(es;) is invertible in H, it follows that p(eg) = ey.

(ii) Using part (i), we have ey = p(eg) = p(gxg™') = p(g)xp(g™),
so we deduce that (g ') = p(g)~ L.

(iii) Using part (ii), we may assume that n is a nonnegative integer.

We proceed by induction on n. The empty product in a group
is the identity, so part (i) proves (¢(g))° = ey = p(eg) = ¢(g°)
and the base case holds. The induction hypothesis implies that

(g™ = p(g * g") = p(g) * p(g")
=@ *(p(@)" = (p(@)"*'. O

1.4.6 Proposition. A group homomorphism is an isomorphism if and
only if the underlying map of sets is bijective.

Proof.

() Suppose that ¢ : G — H is a group isomorphism. Since the
underlying map of sets has an inverse, it is a bijection.

(=) Suppose that the underlying map of sets is bijective. It follows
that there existsasetmap ¢! : H - G suchthatp~logp = idg
and @ o ¢! = idy. It remains to show that this set map is a
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It follows, immediately from the
definition, that the composition of
group homomorphisms is again

a group homomorphism and the
identity map on a group is a group
homomorphism.

For any element g € G, Lemma 1.4.5
establishes that the map 7y : Z —» G
defined by 7g(n) := g" is a group
homomorphism.

Following Definition 1.3.3, a group
homomorphism¢: G — Hisan
isomorphism if there exists a group
homomorphism ¥ : H — G such that

Il)o(pzidc and¢o¢:idH.
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Two groups G and H are isomorphic,
denoted by G = H, if there exists an
isomorphism ¢ : G — H.

group homomorphism. Since ¢ is a group homomorphism, it
follows that, for all g, h € H, we have

P~ (g) x 71 (h)) = p(¢~'(g)) * p(¢~'(h)) = g = h,

which implies that ¢=1(g * h) = ¢~1(g) x ¢~!(h). Thus, the
inverse map ¢~!: H — G is a group homomorphism. O

1.4.7 Example. The group homomorphism exp: (R, +) - (R.q,-)
is an isomorphism whose inverse is log : (R.q,-) = (R, +). <&

1.4.8 Example. The matrix subgroup {[ {1 ]| r € R}is isomorphic to
R. The map ¢: R — SL(2,R) defined by ¢(r) := [§ /] is a group
homomorphism because p(r +5) = [§ 15| = [31][45] = o(r) (s).
The inverse map sends the matrix [ § ] | to the number r. 3

A group homomorphism determines two important subgroups.

1.4.9 Proposition. Lety : G - H be a group homomorphism.
(i) The image Im(p) := {h € H | h = p(g) for some g € G} of the
map @ is a subgroup of its target H.
(ii) The kernel Ker(p) := {g € G | ¢(g) = ey} of the map ¢ is a
subgroup of its source G.

Proof.

(i) Given elements i’ and & in the image of the map ¢, there are
elements g and g’ in G such that ¢(g’) = h' and ¢(g) = h.
Since ¢ is a group homomorphism, Lemma 1.4.5 implies that
p(g xg™") = p(g)xp(g)™! =h «h™'. Ash’' +h™! € Im(p),
Lemma 1.2.2 shows that Im(¢) is a subgroup of H.

(ii) Given elements g’ and g in the kernel of the map ¢, we have
p(g'*g™") = p(g)*p(g)™! = eyxey' = ey. Asg'xg™" € Ker(p),
Lemma 1.2.2 shows that Ker(¢) is a subgroup of G. O

1.4.10 Example. The group homomorphism det: GL(n,R) — R*
has Im(det) = R™ and Ker(det) = SL(n, R). <>

1.4.11 Corollary. A group homomorphism is injective if and only if its
kernel is trivial.

Proof. Let ¢ : G —» H be a group homomorphism.

(=) Suppose that pisinjective. Lemma 1.4.5 shows that p(eg) = ey
and injectivity ensures that e; is the only element sent to ey.
Thus, the kernel of the map ¢ is the trivial subgroup {es}.

(<) Suppose that ¢ has a trivial kernel. For any elements f,g € G,
the equation @(f) = @(g) is equivalent to @(f * g71) = ey.
Since Ker(¢) = {eg}, we deduce that f x g7! = egand f = g.
Hence, the map ¢ is injective. O



1.5 Permutation Groups

As an alternative to their characterization as automorphism groups,
abstract groups may be realized as subgroups of a symmetric group.

1.5.1 Definition. A group G acts on a set X if there exists a map
G x X — X, denoted by (g, x) — g x, such that
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(associativity) For all g, h € G and all x € X, we have (gh)x = g(hx).
(identity) For the identity element e € G and all x € X, we have ex = x.

1.5.2 Example. For all nonnegative integers n, the symmetric group
©,, acts, by definition, on the finite set [n] := {1, 2,..., n}. <>

1.5.3 Example. The properties of matrix multiplication imply that
the general linear group GL(n, R) acts on column vectors v € R" by
left multiplication. <>

1.5.4 Example. The orthogonal group O(n, R), which consists of the
distance-preserving linear maps, acts on the unit sphere in R". <

1.5.5 Example. The dihedral group D,,, which consists of the auto-
morphisms of a regular polygon with n edges, acts on the set of
vertices of the polygon. <>

1.5.6 Proposition. A group G acts on a set X if and only if there exists a
group homomorphism from G to the symmetric group ©x.

Proof. Suppose that G acts on the set X. Given an element g € G,
consider the map g, : X — X defined by o,(x) := g x. Associativity
of the group action establishes that, for all g, h € G, the functional
equation 0, o 0 = Oy, holds. The identity property of the group
action implies that o, = idx. As every element in G has an inverse,
we see that 040051 = Ogg1 = idy = T4-14 = TOg-1 00, Which proves
that, for all g € G, the map oy is bijective. We conclude that the
map 0: G — @y, defined by g = 0y, is group homomorphism.

Conversely, suppose that ¢ : G - ©x is a group homomorphism.
Consider the map G x X — X defined by (g, x) ~ (¢(g))(x). Since
the map ¢ is group homomorphism, it follows that, for allg,h € G
and all x € X, we have

(8h)(x) = (p(gh)(x) = p(g)(p(M)(x)) = g(hx).

Since Lemma 1.4.5 demonstrates that ¢(e) = idy, we also see that
ex = (p(e))(x) = x. Therefore, the map G x X — X defined by
(8, x) ~ (p(g))(x) has the associativity and identity properties. [

Every group acts on its underlying set.

1.5.7 Example (Left translation). Given an element g in a group G,
the map A, : G — G is defined by 4,(x) := gx. Forall g, h, x € G, we

The operation associating the action
of the group G on the set X to a group
homomorphismo: G - &x and

the operation associating a group
homomorphism ¢ : G - &x to the
action of G on X are mutual inverses.
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Left translation is generally not a
group homomorphism;

Ag(xy) = gxy # gxgy = Ag(x) Ag(y).

Arthur Cayley (1854) first highlights
this correspondence, although
Camille Jordan (1870) appears to
give the first complete proof.

have (14 0 4,)(x) = A4(hx) = g(hx) = (gh)x = Ag,(x) which gives
Ag 0 A = Ag. Moreover, for all x € G, we also have A(x) =ex =x,
so 4, = idg. Thus, every group acts on itself by left translation. <

1.5.8 Theorem (Cayley). Every group G is isomorphic to a subgroup of
the symmetric group ©.

Proof. Consider the map 1: G — & defined by A(g) := 4,. Since
we have A(g) A(h) = A, 4, = Ay, = A(gh) for all g,h € G, the map 1
is a group homomorphism. The equation A(g) = A(h) implies that
Ag(x) = Ap(x) for all x € G, so we obtain g = A,(e) = Ay(e) = h.
Thus, the group homomorphism 4 is injective and G is isomorphic
to the image of 4. O

1.5.9 Example. Under left translation, we see that the elements in
the Klein 4-group correspond to the permutations id,, (2 1)(4 3),
(31)(4 2),and (3 2)(4 1) in &,; compare with Figure 1.1. <&

1.5.10 Example. Under left translation, the elements in the dihe-
dral group D; corresponds to idg, (2 1)(5 3)(6 4), (3 1)(5 4)(6 2),
(41)(52)(63),(432)(615),and (42 3)(6 51) in &;. Enumerating
the vertices in the triangle, we see that D; is isomorphic to &;. <

Every group acts on its underlying set in a few different ways.

1.5.11 Example (Right action). Given an element gin a group G, the
map p,: G — G is defined by A,(x) := xg™'. Forall g,h,x € G,
we have (og 0 p,)(X) = pg(xh™) = (xh™1)g™" = x(gh)™! = pgn(x)
which gives p, o p), = pgi. Moreover, for all x € G, we also have
Pe(x) = xe™! = x, so p, = idg. Thus, every group acts on itself on
the right. <

1.5.12 Example (Conjugation). Given an element g in a group G, the
map ¥, : G — G is defined by y,(x) := gxg~!. For all g, h, x € G, we
have

(Vg o ¥n)(x) = Y4(hxh™') = g(hxh=")g™! = (gh)x(gh)™' = ygn(x)

which gives yz o ¥, = Ygn. Moreover, for all x € G, we also have
7.(x) = exe™! = x, so y, = idg. Thus, every group acts on itself by
conjugation. <&



