1.8 Isomorphism Theorems

The isomorphism theorems describe relations between quotients,
homomorphisms, and subobjects.

1.8.1 Theorem (First Isomorphism). Let@ : G — H be a group homo-
morphism with kernel K := Ker(¢). The induced map @ : G/K — Im(¢p)
defined by (g K) := @(g) is an isomorphism from the quotient group to
the image. Writing w : G — G/ Ker(g) for the canonical surjection and
t: Im(p) — H for the canonical injection, we also have @ = to @ o TT.

Proof. Saying that two elements f,g € G represent the same left
coset means that f K = g K which is equivalent to f~!g € K. Since
@ is a group homomorphism, we have ¢p(f) = ¢(g) if and only if
o(f~'g) = ey. It follows that @ is a well-defined map from G/K.
The kernel K being a normal subgroup and the map ¢ being a group
homomorphism imply that

P((fK)gK)) = (fgK) = o(f8) = o(f) (8) = ¢(f K) P(gK),

so the map @ is a group homomorphism. By construction, the map
@ is surjective and its kernel is the left coset K. Therefore, the map
@ is an isomorphism. The second part follows immediately from
the definition of ¢. O

1.8.2 Corollary. All cyclic groups of a given finite order are isomorphic.

Proof. Let m be a positive integer and let G := (g) denote a cyclic
group of order m. Lemma 1.4.5 establishes that the map 7, : Z —» G,
defined for all n € Z by ng(n) := g", is a group homomorphism.
Since g generates G, the map 7, is surjective. Lemma 1.2.10 proves
that Ker(n) = (m). Thus, the First Isomorphism Theorem shows
that G is isomorphic to the quotient group Z/(m). O

1.8.3 Example. The exponential function £: R — S!, defined by
&(x) := exp(27wix) = cos(27x) + i sin(27x), is a surjective group
homomorphism. Since Ker(§) = {x € R | exp(27ix) = 1} = Z, the
First Isomorphism Theorem shows that R/Z = S!. 3

1.8.4 Lemma. Let H be a subgroup of a group G. For any normal sub-
group K of G, the product HK is a subgroup of G and HK = KH.

Proof. Suppose that h € H and k € K. Since K is normal, we have
k' := hkh~! € K and hk = (hkh~')h = k'h € KH, so HK C KH.
We also have k” := h='kh € K and kh = h(h~'kh) = hk” € HK, so
KH C HK. We conclude that HK = KH.

It remains to show that the product HK is a subgroup of G. Since
eég € H and e; € K, the product HK is nonempty. Given elements
Wk',hk € HK, it follows that (hk)™! = k~'h~! € KH = HK and
h'k'(hk)™' € HKHK = HHKK = HK. O
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Originally formulated for modules
by Emmy Noether (1927), versions
exist for groups, rings, vector spaces,
modules, Lie algebra, and various
other algebraic structures.

G # H
G/K —¢> Im(e)

Figure 1.8: Commutative diagram
arising from Theorem 1.8.1
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Let K and H be subgroups of a group
G such that K C H. If K is a normal
subgroup of G, then K is a normal
subgroup of H; indeed, the condition
gkg™! € K for all g € G implies that
hkh~! e K forallh € H.

Most properties of subgroups are

preserved under this bijection. For

instance, given any two subgroups H

and H' of G containing K, we have

« HC H' ifandonlyif H/K C H'/K

- [H' : Hl = [H'/K : H/K] whenever
HCH'

« (HnH')/K =(H/K)n(H'/K)

« H is a normal subgroup of G if and
only if H/K is a normal subgroup of
the quotient G/K.

1.8.5 Theorem (Second Isomorphism). Let G be a group, let H be a
subgroup of G, and let K be a normal subgroup of G. The product KH is
a subgroup of G, the intersection K n H is a normal subgroup of H, and
the quotient groups H/(K n H) and KH /K are isomorphic.

Proof. Since K is a normal subgroup of G, Lemma 1.8.4 establishes
that K is a normal subgroup of HK. For all g € KH, we claim that
the left coset gK € KH/K is of the form h K for some h € H. By
definition, we have g = kh for some k € K and h € H. We also have
k” := h='kh € K and kh = hh~'kh = hk', so khK = hk'K = hK.
It follows that the map ¢ : H — KH/K defined by ¢(h) := hK is
surjective. Since ¢ = 7|y where 7 : G — G/K is the canonical map,
the map ¢ is a group homomorphism. Because Ker(7) = K, we
have Ker(¢) = KnH so KnH is anormal subgroup of H. Thus, the
First Isomorphism Theorem gives H/(K n H) ~ KH/K. O

1.8.6 Theorem (Third Isomorphism). Let H and K be normal sub-
groups of a group G. When K is also a subgroup of H, the quotient
H/K is a normal subgroup of G/K and the quotient G/H is isomorphic
to (G/K)/(H/K).

Proof. As K is a normal subgroup of the group G, the identity map
on G induces a surjective group homomorphism ¢ : G/K - G/H
defined by ¢(g K) := g H. Since we have

Ker(p) ={gK|gH =H}={gK|ge H} = H/K,

the quotient group H/K is a normal subgroup of G/K. Thus, the
First Isomorphism Theorem gives G/H = (G/K)/(H/K). O

1.8.7 Theorem (Correspondence). Given a normal subgroup K of a
group G, the canonical map w: G — G/K induces a bijection between
the set of all subgroups of G containing K and the set of all subgroups of
the quotient G/K.

Proof. Given a subgroup H of G containing K, the induced image
n(H) = {hK | h € H} = H/K is a subgroup of the quotient G/K
because g, h € H implies that (gK)(hK)~! = gh~'K € H/K.

Given a subgroup U of the quotient G/K, consider the preimage
71 (U) = {g € G | n(g) € U} The left coset K is the identity
in the quotient group G/K, so the preimage 7~!(U) contains the
subgroup K. For any f,g € 7~}(U), it follows that 7z(f), 7(g) € U
and 7(f)7(g)™' = n(fg=') € U. Since fg=! € 771(U), we deduce
that 771(U) is a subgroup of G containing subgroup K.

By construction, these two induced maps are mutual inverses.
Thus, the canonical map 7 : G - G/K induces a bijection between
the set of all subgroups of G containing K and the set of all sub-
groups of the quotient G/K. O



1.9 Orbits and Stablizers

Having a group act on a set reveals some valuable subgroups and
subsets. These fundamental ideas have a surprisingly wide range
of applications within group theory and beyond.

1.9.1 Definition. Let G be a group acting on a set X and fix x € X.
The orbit of the element x is the subset orbs(x) :={gx | g€ G} C X.
The stabilizer of x is the subgroup stabg(x) := {g € G | gx = x} of G.
The group G acts transitively on the set X if there is only one orbit,
and it acts freely on X if every stabilizer is the trivial group {e}.

1.9.2 Example. The symmetric group ©,, acts transitively on finite
set [n]. The stabilizer of n € [n] is the subgroup ©,,_; of ©,,. <&

1.9.3 Example. Since any unit vector is part of an orthonormal basis,
O(n,R) and SO(n, R) act transitively on the sphere S*"! c R". <«

1.9.4 Example. For any integer greater than 1, the dihedral group D,,
acts transitively on the vertices of the regular polygon with n edges.
For any vertex v of the regular polygon, we have |stabp, (V)| = 2
because the stabilizer contains the identity and a reflection. <

1.9.5 Example. Suppose that a group G acts on its underlying set by
left translation. For any g € G, we see that orbg(g) = G because
Ang-1(8) = hg™'(g) = hfor all h € G. We also have stabs(g) = {e}
because g = 4,(g) = hg implies that h = e. <&

1.9.6 Example. Suppose thata group G acts on itself by conjugation.
For any g € G, the orbit
orbs(g) ={f € G| f:= hgh~! for some h € G}
is the conjugacy class of g, and the stabilizer
stabg(g) = {h € G | hgh™' = g} = Cg(g)
is the centralizer of the element g. <

1.9.7 Example. Every group G acts on its subgroups by conjugation.
An element g € G acts on the subgroup H of G by sending it to
gHg™!. The orbit orb;(H) consists of all conjugates of the sub-
group H. Hence, the subgroup H has a trivial orbitif and only if H is
normal. The stabilizer Ng(H) := stabg(H) = {g € G | gHg ! = H}
is the normalizer of the subgroup H. <&

1.9.8 Proposition. When a group G acts on a set X, the set X is the
disjoint union of the orbits.

Proof. It suffices to prove that orbits are equivalence classes: x = y
if and only if there is g € G with y = gx. We verify that this is an
equivalence relation.

GROUP THEORY 23

Copyright © 2020, Gregory G. Smith
Last updated: 2020-09-14

For all g, h € stabg(x), we have
h~lx = h™lhx = ex = xand
gh™lx = gx = x,s0 gh™! € stabg(x).
Hence, Lemma 1.2.2 implies that
stabg(x) is a subgroup.

Forall gfg~1,ghg™!, we have

gfg ' (ghg™ ) =gfh'g" e gHg™,
so Lemma 1.2.2 implies that gHg ™! is
a subgroup of G.
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When a finite group acts on a set, the
cardinality of any orbit divides the
order of the group.

Every finite subgroup of SO(3, R) is

one of the following:

« acyclic group of rotations by
multiples of 277/k about a line;

« adihedral group consisting of
the automorphisms of a regular
polygon with k edges;

« atetrahedral group consisting of
the 12 rotations carrying a regular
tetrahedron to itself;

« aoctahedral group consisting of
the 24 rotations carrying a regular
octahedron to itself;

« the icosahedral group consisting of
60 rotations carrying a regular do-
decahedron or regular icosahedron
to itself.

(transitive) If x = yandy = zthen y = gx and z = hy for some
g,h € G. Hence, z = hgx. Since hg € G, we have x = z.

(symmetric) If x = y, then y = gx for some g € G. Hence, x = g~y
SOy = X.

(reflexive) Since e € G, x = ex and X = Xx. O

1.9.9 Theorem. Assume thatthe group G actsonthesetX. Forallx € X,
the cardinality of its orbit is |orbg(x)| = [G : stabg(x)].

Proof. Let E be the set of all left cosets of the subgroup stabg(x) in
G. We claim that the map ¥ : E — orbs(x) defined, for all g € G, by
(g stabg(x)) := gx is a bijection.

(well-defined) Suppose that g, h € G satisfy g stabg(x) = hstabg(x).
It follows that there exists f € stabg(x) such that h = gf. As
fx = x,weseethat hx = gfx = gx.

(injective) Suppose that gx = 1(gstabg(x)) = P(hstabg(x)) = hx.
It follows that h=!gx = x. We deduce that h~!g € stabg(x) and
gstabg(x) = hstabg(x).

(surjective) Suppose thaty € orb(x). Itfollows that there existsg € G
such that y = gx. Hence, we have y = gx = 1)(g stabg(x)). O

1.9.10 Example. Let G be a finite group. An element x € G has a
unique conjugate if and only if it belongs to the center Z(G). By
partitioning G into conjugacy classes, we obtain the class equation:

IG| = Z(G)| + Zi[G : Co(xy)]

where one element x; is selected from each conjugacy class having
more that one element. <&

1.9.11 Corollary (Counting formula). Assume that the finite group G
acts on the set X. For all x € X, we have |G| = |orbg(x)| |stabg(x)|.

Proof. Combine Theorem 1.6.9 and Theorem 1.99. O

1.9.12 Example. For any finite group G, the number of conjugates of
Xx € G is the index of its centralizer and hence a divisor of |G|. <

1.9.13 Example. Let G be a finite group. The number of conjugates
of a subgroup H is [G : Ng(H)] and hence a divisor of |G|. <

1.9.14 Example. Let G be the subgroup G of SO(3, R) that preserves
aregular dodecahedron. The stabilizer of a pentagonal face s is the
group of rotations by 277/5 about a perpendicular through its center,
so [stab(s)| = 5. There are 12 faces and G acts transitively on them,
so |G| = 5-12 = 60. Alternatively, G operates transitively on the
vertices v. There are 3 rotations which fix a vertex so |stab(v)| = 3.
Since there are 20 vertices, we have |G| = 3 - 20 = 60. Similarly, if e
is an edge, then we have |stab(e)| = 2so |G| = 2-30 = 60. <&



