1.10 The First Sylow Theorem

Named after Ludwig Sylow (1832-1918), the Sylow Theorems detail
the number of subgroups of fixed order in a given finite group. They
form a fundamental part of finite group theory and play a significant
role in the classification of finite groups.

1.10.1 Lemma. Let G be a group, whose order is a power of a prime num-
ber p, acting on the set X. Setting X® := {x € X | gx = x forallg € G},
we have |X¢| = |X| (mod p).

Proof. Proposition 1.9.8 implies that the subset X \ X¢ is a disjoint
union of G-orbits having cardinality greater than 1. Corollary 1.9.11
establishes that the cardinality of each such orbit is a power of p
distinct from p° = 1 and hence divisible by p. O

1.10.2 Corollary. The center of group, whose order is a power of a prime
number p, is non-trivial.

Proof. Let G be a group with order a power of the prime number p.
The group G acts on itself by conjugation and the set of fixed points
is the centre Z(G). Lemma 1.10.1 demonstrates that

2(G)|=1G|=0  (mod p)
whence |Z(G)| # 1 and Z(G) # {e}. O

1.10.3 Definition. Given a group of order p"m where the integer m
is not a multiple of the prime number p, a Sylow p-subgroup is a
subgroup of order p".

1.10.4 Example. Any subgroup of &, generated by a cycle of length
p is a Sylow p-group because p does not divide (p — 1)!. <

1.10.5 Lemma (Wielandt 1959). For a positive integer n = p"'m where
p is a prime number relatively prime to m, we have (- ) # 0 (mod p).

Proof. Let P be a group of order p" and let T be a set with m ele-
ments. Consider X := P x T and let S be the set of subsets of X
with p” elements. By construction, we have |X| = n and |§| = ().
The group P acts on X by p(x,t) := (px, t) and this action extends
to 8. The fixed-point set 8” is the set of orbits of X. Elements in
8P are subsets Y C X of the form P x {t} where t € T, so |SF| = m.

Lemma 1.10.1 implies that () = || = 87| = m # 0 (mod p). O

1.10.6 Theorem (Sylow 1872). Every finite group contains, for any prime
number p dividing the order of the group, a Sylow p-subgroup.

Proof. Let G be a finite group with |G| = n = p"m where m is nota
multiple of p. If § is the set of p"-subsets of G, then Lemma 1.10.5
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A subgroup with order is a power

of a prime number p is a Sylow
p-subgroup if its index is not a multi-
ple of p.

A finite group, whose order is divisible
by a prime number p, contains a
subgroup of index relatively prime to
p that has order a power of p.
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The symmetric group @3 must be
isomorphic to the dihedral group Dj.
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Figure 1.9: Multiplication tables for

groups of order 6

shows that |§] = ( o) # 0 (mod p). Left translation on G induces
an action of the group G on the set 8. Since the cardinality of |§|
is the sum of the cardinalities of the G-orbits, there exists U € 8
whose G-orbit has nonzero cardinality modulo p. Corollary 1.9.11
establishes that p"m = |G| = |stabg(U)||orbg(U)| which means
p" divides |stabg(U)|. However, stabg(U) consists of the elements
g € Gsuch that gU = U; if u € U then stabg(U) € Uu~! whence
|stabg(U)| < |U| = p". We conclude that |stabg(U)| = p". O

1.10.7 Corollary (Cauchy 1845). Any group whose order is divisible by a
prime number p contains an element of order p.

Proof. By the First Sylow Theorem, there exists a subgroup of order
p" for some positive integer r. Choose an element g in this subgroup
other than the identity. By the Lagrange Theorem, the order of g
divides p". Hence, there exists an integer k such that 0 < k < r and
g has order p*. It follows that the element gl’k_l has order p. O

1.10.8 Problem. Demonstrate that, for the groups of order 6, there
are two isomorphism classes: the class of the cyclic group us and
the class of the symmetric group ;.

Solution. Consider a group G of order 6. Applying Corollary 1.10.7,
let f be an element of order 3 and let g be an element of order 2 in
G. We first claim that the six products fig/, where 0 < i < 2 and
0 < j < 1, are distinct. Indeed, the equation fig/ = f"g® implies
that fi=" = g%J. Every power of f except the identity has order 3
and every power of g except the identity has order 2, so we deduce
that fi-" =g/ =e,r=i,ands = j.

The first claim establishes that G = {1, f, f2,g, fg, f*g}. The
product gf must be one of these elements. It is not possible that
gf = g because f # e. Similarly, we deduce that fg # e, f, f2.
Therefore, we have gf = fgor gf = f*g. Either of these relations,
together with f3 = e and g = e, determine the multiplication table
for the group. Thus, there are at most two isomorphism classes of
groups of order 6 and we already know two: u¢ and ©s. O

1.10.9 Problem. Any group of order p?, where p is a prime number,
is abelian.

Solution. Let G be a group of order p?. Its center Z(G) is a subgroup,
so it has order 1, p, or p2. Corollary 1.10.2 proves that |Z(G)| > 1 and
Corollary 1.10.7 shows that Z(G) has an element f of order p. The
cyclic group H := (f) is a subgroup of C;(g) forallge G. Ifge G
and g ¢ H, then we have |Cs(g)| > p. Since |Cs(g)| divides p?, we
obtain |Cs(g)| = p% Cs(g) = G, and g € Z(G). Since every element
of G belongs to Z(G), the group G must be abelian. O



1.11 The Other Sylow Theorems

The Sylow Theorems give a partial converse to the Lagrange The-
orem. The First Sylow Theorem states that, for every prime factor
p of the order of a finite group, there exists a Sylow p-subgroup of
order p’, the highest power of p that divides the order of the group.
The Second and Third Sylow Theorems refine this existence result.

1.11.1 Theorem (Sylow 1872). Let p be a prime number and let G be a
finite group.
(i) Every subgroup of G whose order is a power of p is contained in a
Sylow p-subgroup.
(ii) The Sylow p-subgroups of G are conjugate to one another and their
number is congruent to1 (mod p).

Proof. Let H be a subgroup of G whose order is a power of p. By
Theorem 1.10.6, there exists a Sylow p-subgroup P of the group G.
Let X be the set of left cosets of P and consider the action of H on
X by left translation. As |X| # 0 (mod p), Lemma 1.10.1 implies that
there exists x € X such that hx = x for all h € H. Given g € G such
that x = gP, we have H C gPg~!.

When H is a Sylow p-subgroup, we obtain |[H| = |P| = |gPg™!|
and H = gPg~! which proves the first assertion in the second part.

Let 8 be the set of Sylow p-subgroups in G and let P act on 8 by
conjugation. The element P € 8 is a fixed point undet this action;
we claim that it is the only one. Suppose that Q € 8 be a fixed point.
It follows that Q is a Sylow p-subgroup of G normalized by P, so the
subgroup P is contained in the normalizer Ng(Q). Both P and Q are
Sylow p-subgroups of Ng(Q), so the first assertion in the second
part shows that there exists n € Ng(Q) such that P = nQn=! = Q.
By the Lemma 1.10.1, we have |§| = |$?| = 1 (mod p). O

1.11.2 Example. The symmetric group &; of order 6 has a normal
Sylow 3-subgroup: {ids, (3 1 2), (3 2 1)}. It also contains three Sylow
2-subgroups of order 2: {ids, (2 1)}, {ids, (3 1)}, and {ids, (3 2)}. <>

1.11.3 Example. For an odd positive integer n, the dihedral group
D, has n Sylow 2-subgroups of order 2. Each of these groups is gen-
erated by a reflection and they are all conjugate under rotations.
For an even positive integer n, the dihedral group D,, also has n
Sylow 2-subgroups. Each Sylow 2-subgroup is isomorphic to u, X u,
because the dihedral group D,, contains no element of order 4. Each
of these groups is generated by a reflection and a rotation by 7. <

1.11.4 Corollary. Letp be a prime number andletp : G; - G, beagroup
homomorphism between finite groups. For every Sylow p-subgroup P, in
G,, there exists a Sylow p-subgroup P, in G, such that ¢(P;) C P,.
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Proof. Apply the Second Sylow Theorem to @(P;). O

1.11.5 Corollary. Let H be a subgroup of G. For every Sylow p-subgroup
P in the group H, there exists a Sylow p-subgroup Q in the group G such
that P = Q n H. Conversely, if Q is a Sylow p-subgroup of G and H is
normal in G, then group Q N H is a Sylow p-subgroup of H.

Proof. The subgroup P is contained in a Sylow p-group Q of G and
Q n H is a maximal subgroup of H whose order a prime power of p
containing P. Hence, the intersection Q N H is equal to P.

Let P’ be a Sylow p-subgroup of H. There is an element g € G
such that gP'g™! C Q. Since H is normal, the conjugate subgroup
P = gP'g!is contained in H, whence in Q n H. As the order of
Q N H is a power of the prime p of H and P is a Sylow p-subgroup
of H, we deduce that P = QN H. O

1.11.6 Corollary. Let K be a normal subgroup of a group G. The image
in the quotient G/K of a Sylow p-subgroup of G is a Sylow p-subgroup
and every Sylow p-subgroup of the quotient G/K is obtained this way.

Proof. Let G’ := G/K and let P’ be the image in the quotient group
G’ of a Sylow p-subgroup P in G. The group G acts transitively on
the quotient G'/P’, so the quotient G’/P’ has the same cardinality as
G/H for some subgroup H of G containing P. It follows that [G' : P']
divides [G : P] and hence is not a multiple of p. We deduce that P’
is a Sylow p-subgroup of G’. Let Q' be another Sylow p-subgroup of
G'. The Third Sylow Theorem implies that Q' = g’'P’(g’)~! for some
g € G'. Choose an element g € G as a representative for the left
coset g’, we see that Q' is the image of Q = gPg~L. O

1.11.7 Proposition. Let p be a prime number. For anyr € N, a group of
order p” has a normal subgroup of order p¥ for all0 < k < r.

Proof. Let G be a group of order p". We proceed by induction on r.
The case r = 0 is trivial. Corollary 1.10.2 shows that the center of G
is nontrivial. By Corollary 1.10.7, there exists a subgroup Z of Z(G)
of order p. Since the elements in Z(G) commute with every element
in G, the subset Z forms a normal subgroup of G. Given 1 < k < r,
we have p¥~! < p’~! = |G/Z| The induction hypothesis establishes
that the quotient group G/Z has a normal subgroup H' of order p*~!.
Hence, the Correspondence Theorem shows that there is a normal
subgroup H of G containing Z with H' = H/Z. As |H/Z| = p*~!, we
deduce that |[H| = p*. O



