1.10 The First Sylow Theorem

Named after Ludwig Sylow (1832-1918), the Sylow Theorems detail the number of subgroups of fixed order in a given finite group. They form a fundamental part of finite group theory and play a significant role in the classification of finite groups.

1.10.1 Lemma. Let G be a group, whose order is a power of a prime number p, acting on the set X. Setting $X^G := \{x \in X \mid gx = x \text{ for all } g \in G\}$, we have $|X^G| \equiv |X| \pmod{p}$.

Proof. Proposition 1.9.8 implies that the subset $X \setminus X^G$ is a disjoint union of *G*-orbits having cardinality greater than 1. Corollary 1.9.11 establishes that the cardinality of each such orbit is a power of pdistinct from $p^0 = 1$ and hence divisible by p.

1.10.2 Corollary. The center of group, whose order is a power of a prime number p, is non-trivial.

Proof. Let *G* be a group with order a power of the prime number *p*. The group *G* acts on itself by conjugation and the set of fixed points is the centre Z(G). Lemma 1.10.1 demonstrates that

$$|Z(G)| \equiv |G| \equiv 0 \pmod{p}$$

whence $|Z(G)| \neq 1$ and $Z(G) \neq \{e\}$.

1.10.3 **Definition.** Given a group of order $p^r m$ where the integer mis not a multiple of the prime number p, a Sylow p-subgroup is a subgroup of order p^r .

1.10.4 Example. Any subgroup of \mathfrak{S}_p generated by a cycle of length p is a Sylow p-group because p does not divide (p-1)!.

1.10.5 Lemma (Wielandt 1959). For a positive integer $n = p^r m$ where *p* is a prime number relatively prime to *m*, we have $\binom{n}{p^r} \not\equiv 0 \pmod{p}$.

Proof. Let P be a group of order p^r and let T be a set with m elements. Consider $X := P \times T$ and let \mathcal{S} be the set of subsets of Xwith p^r elements. By construction, we have |X| = n and $|S| = \binom{n}{p^r}$. The group *P* acts on *X* by p(x, t) := (px, t) and this action extends to S. The fixed-point set S^P is the set of orbits of X. Elements in \mathcal{S}^P are subsets $Y \subseteq X$ of the form $P \times \{t\}$ where $t \in T$, so $|\mathcal{S}^P| = m$. Lemma 1.10.1 implies that $\binom{n}{p^r} = |\mathcal{S}| \equiv |\mathcal{S}^P| = m \not\equiv 0 \pmod{p}$.

1.10.6 Theorem (Sylow 1872). Every finite group contains, for any prime number p dividing the order of the group, a Sylow p-subgroup.

Proof. Let G be a finite group with $|G| = n = p^r m$ where m is not a multiple of p. If S is the set of p^r -subsets of G, then Lemma 1.10.5 Copyright © 2020, Gregory G. Smith Last updated: 2020-09-17

A subgroup with order is a power of a prime number *p* is a Sylow p-subgroup if its index is not a multiple of p.

A finite group, whose order is divisible by a prime number *p*, contains a subgroup of index relatively prime to p that has order a power of p.

The symmetric group \mathfrak{S}_3 must be isomorphic to the dihedral group D_3 .

*	6	? j	$f f^2$	g	fg	f^2g
e	6	? j	$f = f^2$	g	fg	f^2g
f	1	f f	e^{2}	fg	f^2g	g
f^2	$f \mid f$	·2 6	f f f f f f f f f f	f^2g	g	fg
g	٤	f	$g f^2 g$	ş е	f	f^2
$f_{\mathcal{S}}$	$f \mid f$	$g f^2$	g g	f	f^2	e
f^2	$g \mid f^2$	^{2}g 2	$g f^2 g$ $g g$ $g f g$	f^2	e	f
	- -					
*	6	? j	f^2	g	fg	f^2g
*	1 6	2 1	$\frac{f}{f} = \frac{f^2}{f^2}$	g	$\frac{fg}{fg}$	$\frac{f^2g}{f^2g}$
е	1 6	e j f f	f^2 f^2 e	g fg	fg	f^2g
e f	j	e j f f '2 e	$f f^2$ $f^2 e$ $f f$	fg f^2g	fg f^2g g	f ² g g fg
f f^2	$\begin{cases} & \epsilon \\ & j \\ & f \end{cases}$	f f f f f f f f f f	$f f^2$ $f^2 e$ $f f$ $f f$ $f f$ $f f$ $f f$ $f f$	fg f^2g e	fg f ² g g f ²	f^2g g fg f
f f^2		f f f f f f f f f f	$f f^2$ $f^2 e$ $f f$ $f f$ $f f$ $f f$ $f f$ $f f$	fg f^2g e	fg f ² g g f ²	f^2g g fg f
f f^2		f f f f f f f f f f	$f f^2$ $f^2 e$ $f f$	fg f^2g e	fg f ² g g f ²	f^2g g fg f

Figure 1.9: Multiplication tables for groups of order 6

shows that $|\mathcal{S}| = \binom{n}{p^r} \not\equiv 0 \pmod{p}$. Left translation on G induces an action of the group G on the set \mathcal{S} . Since the cardinality of $|\mathcal{S}|$ is the sum of the cardinalities of the G-orbits, there exists $U \in \mathcal{S}$ whose G-orbit has nonzero cardinality modulo p. Corollary 1.9.11 establishes that $p^r m = |G| = |\mathrm{stab}_G(U)| |\mathrm{orb}_G(U)|$ which means p^r divides $|\mathrm{stab}_G(U)|$. However, $\mathrm{stab}_G(U)$ consists of the elements $g \in G$ such that gU = U; if $u \in U$ then $\mathrm{stab}_G(U) \subseteq Uu^{-1}$ whence $|\mathrm{stab}_G(U)| \leqslant |U| = p^r$. We conclude that $|\mathrm{stab}_G(U)| = p^r$.

1.10.7 Corollary (Cauchy 1845). *Any group whose order is divisible by a prime number p contains an element of order p.*

Proof. By the First Sylow Theorem, there exists a subgroup of order p^r for some positive integer r. Choose an element g in this subgroup other than the identity. By the Lagrange Theorem, the order of g divides p^r . Hence, there exists an integer k such that $0 < k \le r$ and g has order p^k . It follows that the element $g^{p^{k-1}}$ has order p.

1.10.8 Problem. Demonstrate that, for the groups of order 6, there are two isomorphism classes: the class of the cyclic group μ_6 and the class of the symmetric group \mathfrak{S}_3 .

Solution. Consider a group G of order 6. Applying Corollary 1.10.7, let f be an element of order 3 and let g be an element of order 2 in G. We first claim that the six products f^ig^j , where $0 \le i \le 2$ and $0 \le j \le 1$, are distinct. Indeed, the equation $f^ig^j = f^rg^s$ implies that $f^{i-r} = g^{s-j}$. Every power of f except the identity has order 3 and every power of g except the identity has order 2, so we deduce that $f^{i-r} = g^{s-j} = e$, r = i, and s = j.

The first claim establishes that $G = \{1, f, f^2, g, fg, f^2g\}$. The product gf must be one of these elements. It is not possible that gf = g because $f \neq e$. Similarly, we deduce that $fg \neq e, f, f^2$. Therefore, we have gf = fg or $gf = f^2g$. Either of these relations, together with $f^3 = e$ and $g^2 = e$, determine the multiplication table for the group. Thus, there are at most two isomorphism classes of groups of order 6 and we already know two: μ_6 and \mathfrak{S}_3 .

1.10.9 Problem. Any group of order p^2 , where p is a prime number, is abelian.

Solution. Let G be a group of order p^2 . Its center Z(G) is a subgroup, so it has order 1, p, or p^2 . Corollary 1.10.2 proves that |Z(G)| > 1 and Corollary 1.10.7 shows that Z(G) has an element f of order p. The cyclic group $H := \langle f \rangle$ is a subgroup of $C_G(g)$ for all $g \in G$. If $g \in G$ and $g \notin H$, then we have $|C_G(g)| > p$. Since $|C_G(g)|$ divides p^2 , we obtain $|C_G(g)| = p^2$, $C_G(g) = G$, and $g \in Z(G)$. Since every element of G belongs to Z(G), the group G must be abelian.

The Other Sylow Theorems 1.11

Copyright © 2020, Gregory G. Smith Last updated: 2020-09-17

The Sylow Theorems give a partial converse to the Lagrange Theorem. The First Sylow Theorem states that, for every prime factor p of the order of a finite group, there exists a Sylow p-subgroup of order p^r , the highest power of p that divides the order of the group. The Second and Third Sylow Theorems refine this existence result.

- 1.11.1 Theorem (Sylow 1872). Let p be a prime number and let G be a finite group.
 - (i) Every subgroup of G whose order is a power of p is contained in a Sylow p-subgroup.
- (ii) The Sylow p-subgroups of G are conjugate to one another and their number is congruent to 1 \pmod{p} .

Proof. Let H be a subgroup of G whose order is a power of p. By Theorem 1.10.6, there exists a Sylow p-subgroup P of the group G. Let *X* be the set of left cosets of *P* and consider the action of *H* on *X* by left translation. As $|X| \not\equiv 0 \pmod{p}$, Lemma 1.10.1 implies that there exists $x \in X$ such that hx = x for all $h \in H$. Given $g \in G$ such that x = gP, we have $H \subseteq gPg^{-1}$.

When *H* is a Sylow *p*-subgroup, we obtain $|H| = |P| = |gPg^{-1}|$ and $H = gPg^{-1}$ which proves the first assertion in the second part.

Let S be the set of Sylow p-subgroups in G and let P act on S by conjugation. The element $P \in \mathcal{S}$ is a fixed point undet this action; we claim that it is the only one. Suppose that $Q \in \mathcal{S}$ be a fixed point. It follows that *Q* is a Sylow *p*-subgroup of *G* normalized by *P*, so the subgroup P is contained in the normalizer $N_G(Q)$. Both P and Q are Sylow p-subgroups of $N_G(Q)$, so the first assertion in the second part shows that there exists $n \in N_G(Q)$ such that $P = nQn^{-1} = Q$. By the Lemma 1.10.1, we have $|\mathcal{S}| \equiv |\mathcal{S}^P| = 1 \pmod{p}$.

- 1.11.2 Example. The symmetric group \mathfrak{S}_3 of order 6 has a normal Sylow 3-subgroup: {id₃, (3 1 2), (3 2 1)}. It also contains three Sylow 2-subgroups of order 2: $\{id_3, (21)\}, \{id_3, (31)\}, \text{ and } \{id_3, (32)\}.$
- 1.11.3 Example. For an odd positive integer *n*, the dihedral group D_n has n Sylow 2-subgroups of order 2. Each of these groups is generated by a reflection and they are all conjugate under rotations.

For an even positive integer n, the dihedral group D_n also has nSylow 2-subgroups. Each Sylow 2-subgroup is isomorphic to $\mu_2 \times \mu_2$ because the dihedral group D_n contains no element of order 4. Each of these groups is generated by a reflection and a rotation by π . \diamond

1.11.4 Corollary. Let p be a prime number and let $\varphi: G_1 \to G_2$ be a group homomorphism between finite groups. For every Sylow p-subgroup P_1 in G_1 , there exists a Sylow p-subgroup P_2 in G_2 such that $\varphi(P_1) \subseteq P_2$.

Proof. Apply the Second Sylow Theorem to $\varphi(P_1)$.

1.11.5 Corollary. Let H be a subgroup of G. For every Sylow p-subgroup P in the group H, there exists a Sylow p-subgroup Q in the group G such that $P = Q \cap H$. Conversely, if Q is a Sylow p-subgroup of G and H is normal in G, then group $Q \cap H$ is a Sylow p-subgroup of H.

Proof. The subgroup P is contained in a Sylow p-group Q of G and $Q \cap H$ is a maximal subgroup of H whose order a prime power of p containing P. Hence, the intersection $Q \cap H$ is equal to P.

Let P' be a Sylow p-subgroup of H. There is an element $g \in G$ such that $gP'g^{-1} \subseteq Q$. Since H is normal, the conjugate subgroup $P = gP'g^{-1}$ is contained in H, whence in $Q \cap H$. As the order of $Q \cap H$ is a power of the prime p of H and P is a Sylow p-subgroup of H, we deduce that $P = Q \cap H$.

1.11.6 Corollary. Let K be a normal subgroup of a group G. The image in the quotient G/K of a Sylow p-subgroup of G is a Sylow p-subgroup and every Sylow p-subgroup of the quotient G/K is obtained this way.

Proof. Let G' := G/K and let P' be the image in the quotient group G' of a Sylow p-subgroup P in G. The group G acts transitively on the quotient G'/P', so the quotient G'/P' has the same cardinality as G/H for some subgroup G of G containing G. It follows that G' : P' divides G' : P' and hence is not a multiple of G'. We deduce that G' is a Sylow G'-subgroup of G'. Let G' be another Sylow G'-subgroup of G'. The Third Sylow Theorem implies that G' : G' : G' for some G' : G'. Choose an element G' : G' as a representative for the left coset G', we see that G' is the image of G' : G' is G'. G'

1.11.7 Proposition. *Let* p *be a prime number. For any* $r \in \mathbb{N}$ *, a group of order* p^r *has a normal subgroup of order* p^k *for all* $0 \le k \le r$.

Proof. Let *G* be a group of order p^r . We proceed by induction on *r*. The case r=0 is trivial. Corollary 1.10.2 shows that the center of *G* is nontrivial. By Corollary 1.10.7, there exists a subgroup *Z* of Z(G) of order *p*. Since the elements in Z(G) commute with every element in *G*, the subset *Z* forms a normal subgroup of *G*. Given $1 < k \le r$, we have $p^{k-1} \le p^{r-1} = |G/Z|$ The induction hypothesis establishes that the quotient group G/Z has a normal subgroup H' of order p^{k-1} . Hence, the Correspondence Theorem shows that there is a normal subgroup *H* of *G* containing *Z* with H' = H/Z. As $|H/Z| = p^{k-1}$, we deduce that $|H| = p^k$. □