1.14 Free Groups

Roughly speaking, a free group over a set X is the largest possible
group generated by X. The only relations are the ones required by
the group axioms.

1.14.1 Definition. A group F is free over a set X C F if, for any group
G and any map £ : X — G, there is a unique group homomorphism
¢ : F — G such that ¢(x) = £(x) for all x € X.

1.14.2 Proposition. Free groups over the sets X and X' are isomorphic
if and only if we have | X| = | X'|.

Proof. Suppose that F and F’ are free groups over X and X'. Let
i:X - Fandi': X' — F’ be the canonical inclusion maps. Since
|X| = |X'|, there is a bijection 7: X — X'. Applying the definition of
afree group to the mapsi'o7: X — F'andiot!: X' — F, we obtain
group homomorphisms ¢ : F - F’ and 6 : F’ — F that restrict to
iotand io7~! respectively. Hence, the map 6o0¢ : F — F restricts to
the identity on X and the map ¢o0 : F' — F’ restricts to the identity
on X'. Therefore, the uniqueness part of the definition implies that
0o @ =idr and ¢ o 6 = idgs, so the group homomorphisms ¢ and 6
are mutually inverse and F =~ F'. O

1.14.3 Definition. The rank of the free group over a set is just the
cardinality of the set.

Nothing in their definition ensures that free groups actually exist.

1.14.4 Proposition. There exists a free group over any nonempty set.

Proof. Let X be a nonempty set. Choose a set disjoint from X with

the same cardinality. Denote this second setby X! := {x~! | x € X}.

A word in X U X! is a finite sequence of symbols w = x{'x5? --- x;"
where x; € X, ¢; = 1, and r is anonnegative integer. The sequence
is empty when r = 0 and the empty word is denoted by 1. The
product of the words w = x7'x5> --- x;" and v = yP1y2 --- p&s is given
by juxtaposition wv = x7'x52 --- x;" yP1ys2 - ySs. By definition, the
inverse of the word w is w™! := x; " --- x5 “2x] L.

Let W be the set of all words in XuX ~!. We define an equivalence
relation on W as follows. Two words w and v are equivalent, w ~ v,
if it is possible to pass from one word to the other by means of a
finite sequence of the following basic operations:

. insertion of an xx~! or x~!x as consecutive elements;
« deletion of consecutive elements of the form xx~! or x~1x.

It follows that this relation is transitive, symmetric and reflexive.

The equivalence class to which w belongs is denoted [w].
Let F := W/ ~ be the set of all equivalence classes. Given w ~ w’
and v ~ V', we see that wv ~ w'v’, so the product [w][v] = [wv]
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This definition mimics the construc-
tion of a linear map from a vector
space with basis to another vector
space. Specifically, if {vq, ,, ..., Uy} is
a basis of a vector space IV and W is a
vector space with wy, w,,...,w, € W,
then there is a unique linear map
T:V — W such that T(v;) = w; for
alll1gign.

Proposition 1.14.2 proves that any
two free groups over the same set are
isomorphic.

The number r is the length of the
word and we set |w| :=r.

By definition, we have wl = w = 1w.
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is well-defined. Since we have (wv)u = wovu = w(vu), it follows
that ((w][vD[u] = [(wv)u] = [w(vu)] = [w]([v][u]). We also have
[w][1] = [w] = [1][w] and [w][w~!] = [ww™!] = [1]. Therefore, F is
a group and we have an inclusion X — F given by x — [x].

To show that the group F is free over X, let G be an arbitrary
group and let £ : X — G be any map. Consider the map @: W — G
defined by @(xj' -+ ;") 1= &(x1) --- £(x,)¢r. When w ~ w', we see
that g(w) = @(w’) because products like gg~! and g~!g equal eg
in the group G. Hence, we obtain a well-defined map ¢: F — G.
Moreover, we have

p([w][v]) = p([wo]) = [@(wov)]
= [p(w)@(v)] = [P(w)][@(V)] = p([wDe([v])

so ¢ is a group homomorphism extending &. It is clearly unique.
To see that the map x — [x] defines a bijection from X to [X],
let G be any group with |G| > |[X| and let £ : X — G be an injection.
Since ¢([x]) = &(x) for all x € X, we deduce that x — [x] must
define a bijection. O

The equivalence classes used to construct F := W/ ~ have pre-
ferred representatives.

1.14.5 Definition. A word is reduced if it contains neither xx~! nor
x~1x as a substring.

1.14.6 Proposition. Each equivalence class of words in X contains a
unique reduced word. O

Sketch of Proof. We have x*x~¢ ~ 1forall x € XuX~!. Since deleting
such a pair reduces the length, each equivalence class contains a
reduced word.

Suppose that an equivalence class contains two distinct reduced
words w and w’. There is a sequence w = wy, Wy,...,w, = W
of words such that w;_; and w; are related by a basic operation.
Choose this sequence to minimize the sum of the lengths |w;|. Two
words related by a basic operation differ in length by 2 and can-
not both be reduced, so ¢ > 1. Choose i such that |w;| is maxi-
mal. It follows that 0 < i < r and |w;_| = |wi4| = |w;| — 2.
If these two deleted substrings of w; are disjoint, then we can re-
verse the order of the substititions and obtain another sequence
with |w;| = |w;_;| — 2 which contradicts the minimality of the se-
quence. On the other hand, if these two substrings are not disjoint,
then either they are equal or they are the substrings of x¢x~¢, x~x*
of a substring x¢x~¢x¢ of w;. In both cases, we have w;_; = w;;; so
we can shorten the sequence contradicting minimality. O



1.15 Generators and Relations

Free groups allow one to describe any group in terms of generators
and relations. Before formalizing this idea, we collect a few easy
consequences of our construction of free groups.

1.15.1 Corollary. When |X| > 2, the free group over X is nonabelian.

Proof. For any two distinct elements x, y € X, the word x~'y~!xyis
reduced which means x~'y~lxy # 1 so xy # yx. O

1.15.2 Corollary. Every element, except for the identity, in a free group
has infinite order.

Proof. Consider a free group over a set X. Given an element x € X,

the word x x --- x is reduced, so x x --- X # 1. Hence, element x does
N’ N’
n-times n-times
not have finite order. O

1.15.3 Corollary. LetF be the free group over the two-element set{x, y}.
The three elements u := x?, v := y? and w := Xy generate a subgroup
isomorphic to the free group over the three-element set {u, v, w}.

Proof. Let F’ be the free group on {u,v,w}. The map defined by
U~ x3, v~ ¥} and w —~ xy determines a group homomorphism
¢ : F' - F. Since the images of uv, vu, uw, wu, vw and wv are all
reduced words in{x, y, z}, areduced word in {u, v, wju{u~!, v, w1}
maps to areduced word in {x2, y?, xy}u{x~1, y~1, (xy)~'}. Hence, the
kernel of the map ¢ is trivial and the map g is injective. O

1.15.4 Proposition. Every group is a quotient of a free group.

Proof. Let X be a set for which there exists a bijection £: X - G
and let F be the free group on X. Hence, there exists a surjective
group homomorphism ¢ : F — G, so G = F/Ker(p). O

1.15.5 Definition. A presentation of a group G is given by surjective
homomorphism 1 from a free group F over a set X to G. We call
the set X the generators of G and a set R such that (R) = Ker(y)
relations. One often writes G = (X | R).

1.15.6 Example. The cyclic group of order 6 can be presented as ei-
ther (x | x®) or (a, b | a3, b?,a"'b~'ab). <

1.15.7 Example. The free group has a presentation (X | @). <&

1.15.8 Theorem (Von Dyck). Let G := (xy,..., X, | rj,j € J). Given a
group H := (hy, ..., hy,) such thatrj(h,, ..., h,) = ey forall j € J, there
exists a surjective group homomorphisme : G — H such thatp(x;) = y;
foralll <i<n.
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The free group over the one-element
set {x} is an infinite cyclic group and
hence isomorphic to Z.

Informally, (X | R)is the 'largest’
group that is generated by X in which
all of the strings w € R represent the
identity element.

Walther von Dyck (1882) provided the
first systematic study of presentations
of groups by generators and relations.
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Proof. Let F be the free group over the set {x;,..., x,}. There is a
group homomorphism ¢ : F - H with ¢(x;) = h;. Since we have
ri(hy,..,h,) = ey for all j € j, it follows that r; € Ker(¢). By the
First Isomorphism Theorem, the map ¢ induces a surjective group
homomorphism G = F/Ker(p) — H. O

1.15.9 Problem. For all integers n greater than 1, show that the di-
hedral group D,, has a presentation {x, y | X", y?, yxyx).

Proof. Let G be the group defined by the given presentation. Theo-
rem 1.15.8 produces a surjective group homomorphism ¢ : G — D,,,
which sends x to a rotation by 27z/n and y to a reflection. We see
that |G| > 2n. The cyclic subgroup (x) in G has order at most n, be-
cause x" = eg. Therelation yxy~—! = x~! implies that (x) is anormal
subgroup of G. It follows that G/ (x) s is generated by the image of y.
Finally, the equation y?> = e shows that |G/(x)| < 2. We conclude
that |G| = |(x)| |G/ (x)| < 2n. O

1.15.10 Remark. Given integer ¢, m,and nsuchthatl < ¢ <m<n,
the group G := (x,y,z | x¢, y™, z", xyz) is finite if and only if

1 1 1 1
~ =111 5.
cl-¢tmtn™'”

This condition is satisfied only when
e« {=m=2andn>2,or
e =2, m=3,and3<n<bs.

We are at the beginning of combinatorial group theory which ex-

plores how much can be said about a group given a presentation.

« A group G has a solvable word problem if it has a presentation
G = (X | R) for which there exists an algorithm to determine
whether an arbitrary word is equal to the identity. Novikov (1955)
showed that there exists there exists a finitely presented group
such that the word problem is undecidable.

« Presentations play an important role in algebraic topology. Van
Kampen’s theorem yields presentations for fundamental groups.
Moreover, topological techniques provide a “natural” prove of the
Nielsen-Schreier theorem: every subgroup of a free group is free.

+ One can study the growth rates of a group (with respect to a sym-
metric generating set). Gromov characterizes finitely generated
groups having a polynomial growth rate as those groups which
have nilpotent subgroups of finite index.

« One canintroduce a metric: the word metric measures the length
of the shortest path in the Cayley graph.



