2
Ring Theory

A ring is an algebraic structure on a single underlying set with two
binary operations. We will focus on the commutative case where
number theory and algebraic geometry provide the keys examples.

2.0 Commutative Rings

2.0.2 Definition. A commutative ring R is a nonempty set with two
binary operations, addition and multiplication, such that

« under addition R is an abelian group;

« multiplication is associative and has an identity denote 1;

« multiplication is distributive: a(b+c¢) = ab+acforalla,b,c € R;
« multiplication is commutative: ab = ba for all a, b € R.

2.0.3 Example. Sets of numbers including Z, Q, R, and C are all
commutative rings under the usual addition and multiplication. <

2.0.4 Example. For any positive integer m, the finite set or quotient
Z/{m) is a commutative ring where addition and multiplication are
inherited from Z. <&

2.0.5 Example. Suppose that R is aring with1 = 0. For all a € R,

it follows that a = 1la = 0a = 0, so R consists of a single element.

This is called the zero ring. <>

2.0.6 Example. Let R be a ring and let X be a nonempty set. The
set of maps from X to R equipped with the pointwise addition and
multiplication is itself a ring. For all functions f, g: X — R, we have

(f +8)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). The constant
function x — 1y is the multiplicative identity. <>

2.0.7 Example. Polynomialsin the indeterminate x with coefficients
in a ring R also form a ring R[x]; addition is defined by

(apx" +a,_1x" 1+ -+ ay) + (b, X" + b,,_1 X" + .- + by)
= (ay + bp)x" + (a1 + by)X" ' + - + (ag + bo),
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Contrary to some conventions, our
rings will always have a multiplica-
tive identity 1. Bjorn Poonen (2016)
makes a compelling argument for this
choice.

Many “ring-like” structures without
a multiplicative identity do occur,
especially in analysis. Focusing on
functions with compact support or
using convolution as the product are
natural examples.
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and multiplication is defined by
(@, X"+ a,_1x" 1+ -+ ag)(bypX™ + b1 XL + -+ + by)
= (anbm)xn+m + (anbm—l + an—lbm)xn-*'m_1 ++ aObO .

In the product, the coefficient of the monomial x* is the element
k
Zi:o ak_ibl- €R. <

2.0.8 Example. Formal power series in x with coefficients in a ring
R also form aring R[[x]]; addition and multiplication are defined by

(i ajxf) + (i bjxj> = i(aj +by)x/, and (i ajxj) (i bjxj) = i (ZJ: akbn_k> x. <
j=0 j=0 j=0 j=0 j=0

For any two integer n and k, the
binomial coefficient () is defined to
be the number of subsets of the set
[n]:={1,2,..., n} having cardinality k.

j=0 \k=0

2.0.9 Proposition. Let R be a commutative ring.

(i) Foralla € R, we have Oa = 0.

(ii) Given the additive inverse —a of a € R, we have (—1)(—a) = a.
(iii) Givenn € N such thatnl = 0 in R, we havena = 0 for alla € R.
(iv) Foralla,b € R, we have (a + b)" = ZZ:O (%) akbrk.

Proof.
(i) Distributivity gives 0Oa = (0 + 0)a = Oa + 0a. Adding —Oa to
both sides gives 0a = 0.
(ii) Distributivity gives 0 = (=1 + 1)(—a) = (-1)(-a) + (—a).
Adding a to both sides gives (—1)(—a) = a.
(iii) The multiplicative identity and the associativity of multiplica-
tion give na = n(la) = (n1)a = 0a = 0.
(iv) We proceed by induction on n. For the base case n = 0, we
have (a + b)" = 1 = (§)a®b°. The induction hypothesis and
the addition identity for binomial coefficients give

(a+b)"*' =(a+b)a+b)"=(a+Db) (Zn: (ﬁ)akb”‘k)

The intersection of any family of sub-
rings is a subring. The intersection
of all subrings containing a set X is
called the subring of R generated by X.

k=0
= (Z <z>ak+lbn—k) v (z <z>akbn—k+l)
k=0 k=0
ntl n+1
= Z((kfl) +(Z))akb”+1—k = Z (nzl)akbr&l—k. 0
k=0 =0

2.0.10 Definition. A subset S of a ring R is a subring if it is a sub-
group of R under addition, closed under multiplication, and con-
tains the multiplicative identity 1g.

2.0.11 Example. The inclusions Z ¢ Q ¢ R c C are all subrings.
Every subring of the integers Z or the quotient Z/(m) contains 1
and hence must be equal to the whole ring. <&

2.0.12 Example. The subset Z[i]:={a+ bie€ C | a,b € Z} c C forms
a subring called the Gaussian integers. <



2.1 Homomorphisms and Fields

2.1.1 Definition. Let R and S be two rings. A ring homomorphismis a
map ¢ : R — S such that p(a + b) = ¢(a) + ¢(b), p(ab) = p(a) ¢(b),
and ¢(1g) = 15 for alla,b € R.

2.1.2 Remark. The composition of two ring homomorphism is aring
homomorphism. The methods used to prove Proposition 1.4.6 also
establish that a ring homomorphism is isomorphism if and only if
it is a bijective homomorphism.

2.1.3 Example. Let R be aring. The map n — n - 1y is the unique
ring homomorphism from Z to R. In particular, the identity map is
the unique ring endomorphism of the ring Z. <>

2.1.4 Example. Complex conjugation z = a + bi » z = a — biis an
automorphism of the ring C. <

2.1.5 Example. The canonical injection from a subring is a ring ho-
momorphism. <>

2.1.6 Example. Let R be a commutative ring and let a € R. The
evaluation map ev, : R[x] — R defined by ev,(f) = f(a) is a ring
homomorphism. <>

2.1.7 Example. For any element f € R[x], the substitution x — f is
aring homomorphism from R[x] to itself. <

2.1.8 Definition. A subset I of a commutative ring R is an ideal if it
is an additive subgroup and the relations r € R, a € I impliesra € I.

2.1.9 Example. For any ring R, both R and {0} are ideals. <>

2.1.10 Example. For any r € R, the set of multiplies of r is an ideal,
called the principal ideal generated by r and denoted by (r). <

2.1.11 Example. Every intersection of ideals is an ideal; compare
with Lemma 1.2.7. For any subset X of aring R, there exists a unique
smallest ideal (X) containing X called the ideal generated by X. <

2.1.12 Proposition. Let¢ : R — S is a ring homomorphism. The kernel
Ker(p) := {r € R | ¢(r) = 0} is an ideal in R and Im(¢p) is a subring of
S. When R and S are nonzero rings, we have Ker(¢) # R.

Proof. Consider a € Ker(gp) and r € R. Since ¢ is homomorphism,
we see that ¢(ra) = p(r)p(a) = (r)0 = 0, so ra € Ker(p). As
Proposition 1.4.9 shows that Ker(g) is an additive subgroup of R,
we deduce that Ker(¢) is an ideal. Since 13 ¢ Ker(¢), the kernel is
a proper ideal whenever R and S are nonzero rings.

For any a’,b’ € Im(¢p), there are a,b € R such that p(a) = a’,
@(b) = b’. Hence, we have p(ab) = ¢(a)p(b) = a’'b’ € Im(p).
Proposition 1.4.9 establishes that the image Im(¢) is an additive sub-
group of S containing 1g, so Im(¢) is a subring. O
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A ring is not a group under multiplica-
tion (except for the zero ring). If we do
not insist that (1) = 1g then weird
things can happen.
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2.1.13 Definition. A ring element is a unit if it has a multiplicative
inverse. The set R* of all units in a commutative ring R forms an
abelian group under multiplication.

2.1.14 Example. We have (Z/(6))* = {1,5} = u, <>

2.1.15 Proposition. A formal power series f := Y. r,x" € R[[x]] is a
unit if and only if the coefficient r is a unitin R. "=°

Proof.

(=) Ifthere exists aformal power seriesg = 3, . s,X" € R[[x]] such
that fg = 1, then we have rys, = 1 so r, is a unit in R.

() Suppose that r, is a unit in R. Recursively defining s,,, for all
nonnegative integers n, by

n
R e —1 e 1 e 1
Soi=Tg 581 =1 (=1180),8, =15 (=F1S1 —1380) 5. s Sy i=1g (— 2 ”iSn—i>,
i=1

Combining Propositions 2.1.20

and 2.1.21, we see that Z/(m)is a
field if and only if the generator m is
a prime number. For a prime number
p, the finite field Z/(p) is frequently
denoted by [p.

it follows that ( > rnx") ( D snx”) = ( > r,-sn_i) x". O
n=0 n=0 n=0 \ i=0

2.1.16 Definition. A field is a nonzero commutative ring in which

every nonzero element is a unit.

2.1.17 Example. Some of our favourite sets of numbers including Q,
R,and C are fields. However, the ring Z is not a field. <&

2.1.18 Definition. Aring R is a domainif its nonzero and the product
of two nonzero elements in R is nonzero.

2.1.19 Proposition. Every field K is a domain.
Proof. Ifab =0and a # 0, then b = a~'(ab) = a=1(0) = 0. O
2.1.20 Proposition. Any finite domain is a field.

Proof. Let R be a finite domain and let a be a nonzero element in R.
Since R is a domain, the map x — ax is an injective function. Since
R is finite, it is also surjective. In particular, there exists b € R such
that ab = 1. Since a was arbitrary, R is a field. O

2.1.21 Proposition. The quotient ring Z/{m) is a domain if and only if
the generator m of the ideal is a prime number.

Proof.

(<) Suppose that m is prime. Given q, r € Z such qr = 0 (mod m),
it follows m divides q or m divides r, so either ¢ = 0 (mod m)
orr =0 (mod m). Hence, the quotient ring Z/(m) is a domain.

(=) Suppose that mis not prime. There exists integer g, r such that
m = pgqand 1 < p,q < m. It follows that p,q # 0 mod m
but pg = 0 (mod m). Hence, the quotient ring Z/(m) is not a
domain. O



