2.2 Isomorphism Theorems

We again have theorems describing the relations between quotients,
homomorphisms, and subobijects.

2.2.1 Theorem. LetI be an ideal in a commutative ring R. The quotient
R/I inherits a multiplication such that canonical map 7 : R - R/l is a
surjective ring homomorphism.

Sketch of Proof. For all a, b € R, multiplication on the abelian group
R/Iisdefined by (a+1I)(b+1):=ab+1I. Supposethata+I =a’'+1
and b+ 1 = b’ + 1 for somea’,b’ € I. It follows thata —a’ € I
and b— b’ € I. To show that multiplication is well-defined, we must
show (a’'+I)(b'+I) =a'b’+I =ab+Iorab—a'b’ € I. Indeed, we
haveab—a'b’ =ab—a'b+a’b—a’'b’ = (a—a’)b+a’(b—b’') € I. By
Corollary 1.7.13, it remains to verify that this product is associative,
commutative, distributive and that the identity is 1 + I. O

2.2.2 Corollary. Lety: R — R’ be a ring homomorphism. For any ideal
I in the ring R and any ideal I' in the ring R’ satisfying o(I) C I, the
induced map ¢ : R/I — R’/I' is a ring homomorphism.

Proof. Since p(1+1I) = ¢(1)+I' = 1+I', it suffices by Corollary 1.7.14
to check that the map @ is compatible with multiplicative;

P((a+I)(b+1))=plab+1I)=gp(ab) +I' = p(a)p(b) + I
=(p@)+I)(ed)+I')=pa+Deb+I). O

2.2.3 Theorem (First Isomorphism). Let ¢ : R — S be a ring homo-
morphism with kernel I := Ker(¢). The induced map @ : R/I — Im(¢p)
defined by @(r + I) = @(r) is an isomorphism. Writingw: R — R/I for
the canonical surjection and t: Im(¢) — S for the canonical injection,
we also have = to @ o 7.

Proof. Since ¢(1 + I) = (1) = 1, it suffices by Theorem 1.8.1 to
check that the map ¢ is compatible with multiplicative;

@((a+I)(b+1)) = @(ab +I) = p(ab)
= (@) p(b) = pla+)P(b +1). O

2.2.4 Problem. Show that Z[i]/(1 + 3i) =~ Z/(10).

Solution. Let g : Z— Z[i]/{(1+3i) be the unique ring homomorphism.
Sincei = (—1)(—1i) = (3i)(—i) = 3 in Z[i]/(1 + 3i), the coset contain-
ing a + bi € Z[i] equal the coset containing a + 3b, so ¢ is surjective.
Given n € Ker(gp), we have n € (1 + 3i). Hence, there are ¢,d € Z
such thatn = (¢ +di)(1+3i) = (c—3d) + (3c + d)i. Since n € Z, we
see that3¢c = —d and n = ¢+ 3(—d) = ¢+ 3(3c) = 10c. We conclude
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Figure 2.1: Commutative diagram
arising from Theorem 2.2.3
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Aside from the First [somorphism
Theorem, there are no methods for
recognizing a quotient ring, because it
will usually not be a familiar ring.

Compare with Theorem 1.8.7.

that Ker(¢p) C (10). We also have 3> = —1 or 10 = 0 in Z[i]/(1 + 3i),
so (10) C Ker(¢). Therefore, the First Isomorphism Theorem yields
the isomorphism Z/(10) = Z[i]/ (1 + 3i). O

2.2.5Problem. Prove that the ring C[x, ¥]/ (xy) is isomorphic to the
subring of the product C[x]xC[y] consisting of the pairs (f(x), g(x))
such that f(0) = g(0).

Solution. The First Isomorphism Theorem gives C[x, y|/(y) = C[x]
because the ideal (y) is the kernel of the map ev,_, : C[x, y] - C[x].
Similarly, we have C[x, y]/(x) = C[y]. Consider C[x, y] — C[x]xC[y]
given by f(x,y) ~ (f(x,0), f(0,y)). The kernel is (x) n (¥} = (xy).
The First Isomorphism Theorem completes the proof. O

2.2.6 Theorem (Second Isomorphism). Let R be a commutative ring.
For allidealsI in R and all subrings S C R, thesum S +1 is a subring of R,
TIisanidealinS +1,SnI isanideal of S, and there is a ring isomorphism
S/I(SnI)=(S+1)/I.

Proof. Since ¢(15) = 1g + I, it suffices by Theorem 1.8.5 to check
thatthemap ¢ : S — (S +1I)/I defined by ¢(s) := s + I is compatible
with multiplicative; p(st) = st +I = (s+ Dt +I) = p(s) p(t). O

2.2.7 Theorem (Third Isomorphism). Let I and J be two ideals in a
commutative ring R such thatI C J. The quotient J/I is an ideal of the
quotient ring R/I and we have the isomorphism R/J =~ (R/I)/(J/I).

Proof. Since (1zx+1I) = 1z +J, it suffices by Theorem 1.8.6 to check
that ¢ : R/I — R/J defined by ¢(r + I) = s + J is compatible with
multiplicative; p(rs + I) = rs+J =+ J)(s+J) = p(r)p(s). O

2.2.8 Theorem (Correspondence). LetI be anidealinR. The canonical
map 7w : R —» R/I induces a bijection between the set of all subrings of R
(respectively, the set of all ideals) containing I and the set of all subrings
(respectively, the set of all ideals) of quotient ring R/I. O

2.2.9 Proposition. For a nonzero ring R, the following are equivalent:
(a) R isafield;

(b) the only ideals in R are{0) and(1);

(c) every ring homomorphism from R to a nonzero ring is injective.

Proof.

(a) =(b) LetI be a nonzero ideal in R. Choose 0 #a € I C R. The
ring element a is a unit, so we have R = (1) C{(a) C I C R.

(b)=>(c) For any ring homomorphism ¢ : R — R’, the kernel Ker(¢p)
is a proper ideal. We have Ker(g) = (0) and the map g is injective.

(c)=>(a) If x € Risnotaunit, then {(x) # (1) and S = R/(x) is not the
zeroring. Let 7 : R — S be the canonical map. By hypothesis, the
map 7 is injective so (x) = (0) and x = 0. O



2.3 Maximal and Prime Ideals

Some ideals have greater significance.

2.3.1 Definition. An ideal I in a commutative ring R is maximal if
I # (1) = R and there is no proper ideal J in R such thatI c J C R.

2.3.2 Proposition. Anideall in R is maximal if and only if the quotient
ring R/I is a field.

Proof.

(=) Suppose that I is maximal ideal. Consider the coset a + I in
R for somea € R\ I. Sincea € a + I and a ¢ I, maximality
impliesthata+I = R,sora+ f = 1forsomer € Rand f € 1.
It follows that (r+I)(a+I) =ra+I =(1— f)+I = 1+1 which
demonstrates that (a) + I is a unit in the quotient ring R/I.

(<) Suppose that the quotient R/I is a field. It follows that, for any
element 0 # 1 € R/I, we have I # R. The only ideals in a
field are (0) and (1), so the Theorem 2.2.8 shows that there are
no ideals in R properly between I and R. Thus, the ideal I is
maximal. O

2.3.3 Example. The maximal ideals in the ring Z are the principal
ideals generated by prime integers. <>

2.3.4 Definition. A partially ordered set or poset P is a set together
with a reflexive, antisymmetric, transitive binary relation <. Two
elements x,y € P are comparable if x < yor y < x. A chain is
a poset in which any two elements are comparable. A subset of a
poset is a chain if it is a chain when regarded as a subposet.

2.3.5 Lemma (Zorn). Any nonempty partially order set, such that every
chain has an upper bound, has a maximal element. O

2.3.6 Theorem (Krull). Any proper ideal in a commutative ring lies in a
maximal ideal.

Proof. Fix a commutative ring R. Let § be the set of all ideals J in R
that contain the ideal I and are not equal to R. Since I € 8, the set
8 is nonempty. Partially order 8 by inclusion. Let C be a chain in S;
given J,J' € C, either J C J' or J' C J. We claim that J* = UJECJ
is an upper bound of C. We clearly have J C J* for allJ € C, so it
remains to prove J* is a proper ideal. If f,g € J* and r € R, then
f,.geJforsomeJ € Candrf +g € J C J*soJis an ideal. If
J* = R, then we would have 1 € J* and 1 € J for some J € C which
contradicts the fact that J is proper. Since every chain of § has an
upper bound, Zorn’s Lemma completes the proof. O

2.3.7 Definition. An ideal I in commutative ring R is prime if the
quotient ring R/I is a domain.
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Partially ordered sets may not have
maximal elements. For example, real
numbers R, with the usual ordering,
has no maximal elements.

Zorn’s Lemma is equivalent to the
axiom of choice or the well-ordering
principle. Kazimierz Kuratowski (1922)
proved a variant and Max Zorn (1935)
proposed it as a new axiom of set
theory.

Wolfgang Krull (1929) first proved
the Theorem 2.3.6 by transfinite
induction.

A maximal ideal J in a commutative
ring R is prime because the quotient
R/J is a field. It follows that every
ideal R other than R is contained in at
least one prime ideal.
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The prime ideals in the ring Z are
principal ideals generated by primes
and the zero ideal.

Two ideals I and J in a commutative
ring R are comaximal if I + J = R.
For this to be true, it is necessary and
sufficient that I + J be contained in
no prime ideal. In other words, no
prime ideal contains both I and J.
Thus, two distinct maximal ideals are
comaximal.

The earliest version of Theorem 2.3.11,

with R = Z, appears in the work
of the Chinese mathematician Sun
Zi. Nothing is known about this
mathematician except for his text
Sunzi suanjing. Dating this is made
more difficult since it is not known
how much the text was changed or
added to over time.

2.3.8 Proposition. Anideall primeifand only ifI # (1) and the relation
fgelimpliesfelorgel.

Proof. For any f € R, let f denote its image under the canonical

map 77 : R — R/I.

(=) If fg € I then we have f g = 0 € R/I. Since R/I is a domain, it
follows that f = 0 or g = 0, so either f e [org € I.

(<) Suppose that fg = 0 for some f,g € R/I. Choose elements
f,g € Rsuchthat f = f+Tandg = g + I. It follows that
0=fg=(f+I)(g+1I) = fg+Isowededuce that fg € I. By
hypothesis, we have f € I or g € I, which implies that? =0or
g = 0. Therefore, the quotient ring R/I is a domain. O

2.3.9 Remark. Let¢: R —» R’ be aring homomorphism and let I’ be
an ideal of R’. Set I := ¢~!}(I’). The induced ring homomorphism
@: R/I - R'/T' is injective. If I’ is a prime ideal, then the quotient
ring R'/I' is a domain. Since the quotient ring R/I is isomorphic to
a subring of R'/I', itis also a domain and the ideal I is a prime ideal.

2.3.10 Lemma. Letl,J,,J5,...,J, beidealsinaringR. WhenR = I +J;
forall j,wehaveR =1+ J,J, ---J, =1+ (J;nJy,n---nJ,).

Proof. Since 1J; C I nJj, it suffices to prove that R = I + J,J, -+ J,,.
By induction, it suffices to consider the case n = 2. By hypothesis,
wehave f, f' €l,g, €J,and g, € J,suchthatl = f+ g, = f' + g».
It follows thatl = f" + (f + 81)8 = (f' + fg) + 818 € I + J1J,
whence we obtain R = I + J,J,. O

2.3.11 Theorem (Chinese Remainder). For any ideals I, 1,,...,I, in a
commutative ring R, the following are equivalent:

« forallk # j, theideal I and I; are comaximal;

« the canonical ring homomorphism¢ : R — Hj(R/Ij) is surjective.
Ifthese conditions hold, then we havel = ﬂj I = 11 Ij and the canonical
map ¢ : R/I — Hj(R/Ij) is bijective.

Sketch of Proof. Suppose that the elements f € I and g € J satisfy
1=f+g Itfollowsthato(f) = (f+I,1-g+J) = {,1+J)
andp(g)=1-f+I1,g+J)=Q+1,J). Foranyr,s € R, we have
o(sf+rg) = o(s) o(f)+e(r)p(g) = (r+1,s+J), which establishes
that ¢ is surjective. Moreover, forallh € InJ, we have h = hf + hg
but hf € IJ and hg € 1J. It follows that h € IJ and InJ C IJ. The
inclusion IJ C I nJ is trivial.

Conversely, suppose that the map ¢ is surjective. Hence, there
exists an element f € R such that ¢(f) = (0 + I,1 + J). We deduce
that feland f =1—gforsomegeJ.

For the general case, use induction. O



