Rings of Fractions 2.4

The procedure for constructing the rational field \mathbb{Q} from the ring of integers \mathbb{Z} extends easily to any domain R. For ordered pairs (r, s), where $r, s \in R$ and $s \neq 0$, the construction uses the equivalence relation: $(r,s) \equiv (r',s') \Leftrightarrow rs' - r's = 0$. This works only if *R* is a domain, because this relation is transitive if and only if R has no zerodivisors. Nevertheless, it can be generalized as follows.

2.4.1 Definition. A subset *S* of a commutative ring *R* is *multiplicative* if every finite product of elements in the set *S* belongs to *S*.

2.4.2 Example.

- For any ring element $f \in R$, the set of powers f^n , for all nonnegative integers n, is multiplicative.
- Let *P* be an ideal in a commutative ring *R*. For the complement $qR \setminus P$ to be multiplicative, it is necessary and sufficient that P be prime ideal.
- The set of elements of in a commutative ring *R* that are not zerodivisors is multiplicative.
- For any two multiplicative subsets S and S', the product SS' is also
- The intersection of multiplicative subsets is multiplicative. The intersection of all multiplicative subsets containing a set is the multiplicative set it generates.

2.4.3 Proposition. For any subset S in a commutative ring R, there exists a commutative ring $R[S^{-1}]$ and a ring homomorphism $\eta: R \to R[S^{-1}]$ with the following properties:

- the elements in the set $\eta(S)$ are units in $R[S^{-1}]$;
- for any ring homomorphism $\psi: R \to R'$ such that the elements in the set $\psi(S)$ are units in R', there exists a unique ring homomorphism $\psi': R[S^{-1}] \to R'$ such that $\psi = \psi' \circ \eta$.

Sketch of Proof. We may replace *S* by the multiplicative subset of *R* generated by *S*. Consider the set $R \times S$ with the relation:

$$(r,s) \equiv (r',s') \Leftrightarrow \text{there exists } t \in S \text{ such that } t(rs'-r's)=0.$$

This relation is clearly reflexive and symmetric. It is also transitive because the equations t(rs' - r's) = 0 and t'(r's'' - r''s') = 0 yield tt's'(rs''-r''s) = t's''(t(rs'-r's)) + ts(t(r's''-r''s')) = 0 and $tt's' \in S$. Let $R[S^{-1}]$ be the quotient of the set $R \times S$ under the equivalence relation. For any ordered pair (r, s), we write r/s for the equivalent class containing the pair (r, s) in $R[S^{-1}]$ and set $\eta(r) := r/1$.

Consider two ring elements f = r/s and g = r'/s' in $R[S^{-1}]$. The ring elements (s'r + r's)/ss' and (rr')/(ss') depend only on the

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-05

This is the same as saying that $1_R \in S$ and the product of two elements of Sbelongs to S.

The multiplicative set generated by a given subset consists of all the finite products of its elements.

Figure 2.2: Commutative diagram arising from Proposition 2.4.3

Two elements in $R[S^{-1}]$ can always be written in the form f/s and g/s with $f,g \in R$ and $s \in S$ with the same denominator. Given f/s and g/s' is $R[S^{-1}]$, we have f/s = fs'/ss' and g/s' = gs/ss'.

If the set S contains a nilpotent element then $0 \in S$ and the ring $R[S^{-1}]$ is the zero ring.

The kernel of map $\eta: R \to R[S^{-1}]$ is the set $f \in R$ such that there exists $s \in S$ satisfying sf = 0. For the map η to be injective, it is necessary and sufficient that the set S contain no zerodivisor in R.

chosen representatives for f and g. Given another representative f = r''/s'', there exists $t \in S$ such that t(rs'' - r''s) = 0 whence we obtain t(s's''(s'r+r's)-ss'(s'r''+r's'')) = 0 and t(s''s'rr'-ss'r''r) = 0. Hence, the binary operations $(f,g) \mapsto f + g = (s'r + r's)/ss'$ and $(f,g) \mapsto fg = (rr')/(ss')$ are well-defined. One verifies that these operations define a commutative ring structure on $R[S^{-1}]$. The additive identity is 0/1 and the multiplicative identity is 1/1. It follows that the map $\eta: R \to R[S^{-1}]$ defined by $\eta(r) = r/1$ is a ring homomorphism. The multiplicative inverse of s/1 is 1/s in $R[S^{-1}]$.

Finally, let R' be a commutative ring and let $\psi: R \to R'$ be a ring homomorphism such that the elements $\psi(S)$ are units. There is a map $\psi': R[S^{-1}] \to R'$ defined by $\psi'(r/s) := \psi(r)(\psi(s))^{-1}$. For any r/s = r''/s'', there exists $t \in \overline{S}$ such that t(r''s - rs'') = 0 whence we have $\psi(t)(\psi(r'')\psi(s) - \psi(r)\psi(s'')) = 0$. As $\psi(t)$, $\psi(s)$ and $\psi(s'')$ are units, we obtain $\psi(r)(\psi(s))^{-1} = \psi(r'')(\psi(s''))^{-1}$. One verifies that ψ' is a ring homomorphism. By construction, we have $\psi' \circ \eta = \psi$. Furthermore, the map ψ' is determined by this relation because we have $\psi'(r/s) = \psi'((r/1)(1/s)) = \psi'(r/1) \psi'(1/s) = \psi(r) \psi'(1/s)$ and $1 = \psi'(1/1) = \psi'(1/s) \psi'(s/1) = \psi'(1/s) \psi(s)$.

- 2.4.4 Remark. For the map η to be bijection, it is necessary and sufficient that every element $s \in S$ be a unit in R. The condition is necessary because s/1 is unit in $R[S^{-1}]$. It is sufficient because, for all $t \in S$, the element t is unit in R and $f/t = ft^{-1}/1$ in $R[S^{-1}]$.
- 2.4.5 **Definition.** When multiplicative set S consists of the nonzero-divisors in commutative ring R, $R[S^{-1}]$ is the *total ring of fractions*. When R is a domain, the ring $R[S^{-1}]$ is the *field of fractions* of R.
- **2.4.6 Example.** Given a ring element $f \in R$ and $S := \{f^n \mid n \in \mathbb{N}\}$, we have $R_f := R[S^{-1}] \cong R[x]/\langle xf 1 \rangle$. In particular, the Laurent polynomial ring $\mathbb{C}[x, x^{-1}]$ is the ring $\mathbb{C}[x]_x$.
- 2.4.7 **Definition.** For any prime ideal P in commutative ring R, we writes R_P for $R[(R \setminus P)^{-1}]$. The elements f/s with $f \in P$ form an ideal P_P in R_P . Every element not in P_P is a unit in R_P . It follows that P_P is the unique maximal ideal in R_P . The process of passing from the ring R to the ring R_P is called *localization* at P.
- **2.4.8 Example.** For the prime ideal $P = \langle 0 \rangle$ in \mathbb{Z} , we have $\mathbb{Z}_{\langle 0 \rangle} = \mathbb{Q}$. The ring $\mathbb{C}[x]_{\langle 0 \rangle} = \mathbb{C}(x)$ consists of all rational functions. \diamondsuit
- **2.4.9 Example.** For any prime number p, the ring $\mathbb{Z}_{\langle p \rangle}$ consists of all rational numbers m/n where the integer n is relative prime to p. \diamond

Univariate Polynomials 2.5

Polynomials arise in many parts of mathematics. A polynomial with coefficients in a commutative ring R is a linear combination of power of a variable: $f := a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_j a_j x^j$, where $a_i \in R$ for all $j \in \mathbb{N}$. The set of all polynomials is denoted by R[x]and the ring operations are defined by

$$\sum_{j} a_j x^j + \sum_{k} b_k x^k = \sum_{j} (a_j + b_j) x^j,$$
$$\left(\sum_{j} a_j x^j\right) \left(\sum_{k} b_k x^k\right) = \sum_{k} \left(\sum_{j} a_j b_{k-j}\right) x^k.$$

The *monomials* x^j are independent over R, so $\sum_j a_j x^j = \sum_k b_k x^k$ if and only if $a_j = b_j$ for all $j \in \mathbb{N}$.

2.5.1 Proposition. *Let* φ : $R \to R'$ *be a ring homomorphism.*

- The map $\sum_i a_j x^k \mapsto \sum_i \varphi(a_j) x^j$ defines a ring homomorphism from
- For any ring element $a \in R'$, there is a unique ring homomorphism $\widetilde{\varphi}: R[x] \to R'$ that agrees with the map φ on constant polynomials

Comment on the Proof. The map $\tilde{\varphi}$ is a composition of the first ring homomorphism and the evaluation map $ev_a: R'[x] \to R'$ defined by $ev_a(f) := f(a)$.

2.5.2 **Definition.** For any nonzero polynomial $f \in R[x]$, the *degree* deg(f) is the largest integer k such that the coefficient a_k of the monomial x^k is nonzero. The nonzero element $a_m \in R$ satisfying $m = \deg(f)$ is the *leading coefficient* of the polynomial. A *monic* polynomial is one whose leading coefficient is 1_R .

2.5.3 Lemma. Let f and g be two nonzero polynomials in R[x].

- If $deg(f) \neq deg(g)$, then the sum f + g is nonzero and its degree is $\deg(f+g) = \max(\deg(f), \deg(g))$. If $\deg(f) = \deg(g)$, then the *degree of the sum satisfies* $deg(f + g) \leq deg(f)$.
- We have $\deg(fg) \leq \deg(f) + \deg(g)$ and equality holds if the leading coefficient of f or g is a nonzerodivisor in R.

Proof. Let a_m be the leading coefficient of f and let b_n be the leading coefficient of g. It follows that the leading coefficient the sum f + gis a_m when m > n and b_n with m < n. When m = n, the coefficient of x^m in the sum f+g is a_m+b_n and the coefficients of all monomials of higher-degree are zero, so $deg(f + g) \le m$. The coefficient of x^{m+n} in the product fg is $a_m b_n$ and the coefficients of all monomials of higher-degree are zero, so $\deg(fg) \leq \deg(f) + \deg(g)$.

2.5.4 Proposition. For any domain R, the polynomial ring R[x] is also a domain and the units in R[x] are the units in R.

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-06

More formally, an infinite sum with finitely many nonzero coefficients.

Iterating this construction yields polynomial rings in more variables: $(R[x])[y] \cong (R[y])[x] \cong R[x, y].$

Proof. Suppose that f and g are nonzero polynomials in R[x]. Since $\deg(fg) = \deg(f) + \deg(g) \ge 0$, it follows that $fg \ne 0$. If fg = 1, then we have deg(f) + deg(g) = deg(1) = 0. Hence, f and g are both polynomials of degree 0 and therefore elements of R.

2.5.5 Theorem (Euclidean Division). *Let f and g be nonzero elements* in R[x] of degrees m and n respectively. Denote the leading coefficient of f by a_m and set $k := \max(n - m + 1, 0)$. There exists $q, r \in R[x]$ such that $a_m^k g = q f + r$ where $\deg(r) < m$. When a_m is a nonzerodivisor in R, the polynomials q and r are uniquely determined by these properties.

Proof. When n < m, take q = 0 and r = g. When $n \ge m$, we proceed by induction on n. Set $f := \sum_{j=0}^{m} a_j x^j$ and write b_n for the leading coefficient of g. It follows that $deg(a_m^k g - a_m^{k-1} b_n x^{n-m} f) < n$. The induction hypothesis implies that, there exists $p, r \in R[x]$ such that $a_m^{k-1}(a_m g - b_n x^{n-m} f) = p f + r$ where $\deg(r) < m$. Hence, we obtain $a_m^k g = (a_m^{k-1} b_n x^{n-m} + p)f + r$ and $q := a_m^{k-1} b_n x^{n-m} + p$.

Consider $q, q', r, r' \in R[x]$ such that $a_m^k g = qf + r = q'f + r'$ where $\deg(r) < m$ and $\deg(r') < m$. It follows that (q-q')f = (r'-r)and $\deg(r'-r) < m$. Since $m + \deg(q-q') = \deg(r'-r) < m$, we conclude that q = q' and r = r'.

- **2.5.6 Definition.** A *root* of polynomial f in R[x] is a ring element $a \in R$ such that $ev_a(f) = f(a) = 0$.
- 2.5.7 Corollary. For any polynomial $f \in R[x]$, there exists $q \in R[x]$ such that f(x) = q(x)(x - a) if and only if we have f(a) = 0.

Proof. Euclidean division implies that there exists q and r in R[x]such that f(x) = q(x)(x - a) + r(x) where deg(r) < 1. Hence, we have $r(x) \in R$. Evaluating at a yields f(a) = q(a)(0) + r, so we obtain f(x) = q(x)(x - a) + f(a).

- **2.5.8 Proposition.** Let f be a polynomial in R[x] and let $a \in R$ in a ring element. For any nonnegative integer $m \in \mathbb{N}$, the following are equivalent: (a) the polynomial f is divisible by $(x-a)^m$ by not by $(x-a)^{m+1}$;
- (b) there exists $g \in R[x]$ such that $f(x) = (x a)^m g(x)$ and $g(a) \neq 0$. Moreover, whenever $f \neq 0$, there exists a unique nonnegative integer m satisfying these conditions.

Proof.

- (a) \Rightarrow (b): Follows from Corollary 2.5.7.
- (b) \Rightarrow (a): If $f(x) = (x a)^m g(x)$ where g does not have a as root, then *f* is divisible by $(x-a)^m$. Suppose that $h \in R[x]$ exists such that $f(x) = (x - a)^{m+1} h(x)$. Since $(x - a)^m$ is not a zerodivisor in R[x], we would have g(x) = (x - a)h(x) which implies that g(a) = 0 which is contradiction.