2.4 Rings of Fractions

The procedure for constructing the rational field Q0 from the ring of
integers Z extends easily to any domain R. For ordered pairs (r, s),
where r,s € R and s # 0, the construction uses the equivalence
relation: (r,s) = (r',s') & rs’ — r's = 0. This works only if R is
a domain, because this relation is transitive if and only if R has no
zerodivisors. Nevertheless, it can be generalized as follows.

2.4.1Definition. A subset S of a commutative ring R is multiplicative
if every finite product of elements in the set S belongs to S.

2.4.2 Example.

« For any ring element f € R, the set of powers f", for all nonneg-
ative integers n, is multiplicative.

« Let P be an ideal in a commutative ring R. For the complement
gR \ P to be multiplicative, it is necessary and sufficient that P be
prime ideal.

+ The set of elements of in a commutative ring R that are not zero-
divisors is multiplicative.

+ For any two multiplicative subsets S and S’, the product SS’ is also
multiplicative.

« The intersection of multiplicative subsets is multiplicative. The
intersection of all multiplicative subsets containing a set is the
multiplicative set it generates. <>

2.4.3 Proposition. For any subsetS in a commutative ring R, there exists

a commutative ring R[S™!] and a ring homomorphism7: R — R[S™!]

with the following properties:

« the elements in the setn(S) are units in R[S™!];

« for any ring homomorphism i : R — R’ such that the elements in
the set (S) are units in R’, there exists a unique ring homomorphism
Y’ : R[S7!] - R’ such that =’ o).

Sketch of Proof. We may replace S by the multiplicative subset of R
generated by S. Consider the set R x S with the relation:

(r,s) =(r',s’) © there exists t € S such that t(rs’ — r's) = 0.

This relation is clearly reflexive and symmetric. It is also transitive
because the equations t(rs’ — r's) = 0 and t'(¥'s” — r"s’) = 0 yield
tt's'(rs" —r"s) = t's"(t(rs' —r's))+ts(t(r's"—r"s')) = Oand tt's’ € S.
Let R[S~!] be the quotient of the set R x S under the equivalence
relation. For any ordered pair (7, s), we write r/s for the equivalent
class containing the pair (7, s) in R[S™!] and set n(r) := r/1.
Consider two ring elements f = r/sand g = r'/s’ in R[S7!].
The ring elements (s'r + r's)/ss’ and (rr')/(ss’) depend only on the
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This is the same as saying that 1z € S
and the product of two elements of S
belongs to S.

The multiplicative set generated by a
given subset consists of all the finite
products of its elements.

R#R’

nl /
('
R[S71]

Figure 2.2: Commutative diagram
arising from Proposition 2.4.3

Two elements in R[S~1] can always be
written in the form f/s and g/s with
f,g& € Rands € S with the same
denominator. Given f/s and g/s’ is
R[S71], we have f/s = fs'/ss’ and
g/s’ = gs/ss’.
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If the set S contains a nilpotent
element then 0 € S and the ring
R[S™!] s the zero ring.

The kernel of map7: R — R[S71]is
the set f € R such that there exists
s € S satisfying sf = 0. For the map
7) to be injective, it is necessary and
sufficient that the set S contain no
zerodivisor in R.

chosen representatives for f and g. Given another representative
f = r"/s", there exists t € S such that t(rs” — r”s) = 0 whence we
obtain t(s's"(s'r+r's)—ss'(s'r"+r's"”)) = 0Oand t(s"s'rr'—ss'r"r) = 0.
Hence, the binary operations (f,g) = f + g = (s'r + r's)/ss’ and
(f,g2) — fg = (rr')/(ss’) are well-defined. One verifies that these
operations define a commutative ring structure on R[S~!]. The ad-
ditive identity is 0/1 and the multiplicative identity is 1/1. It follows
that the map 7 : R — R[S~!] defined by n(r) = r/1 is a ring homo-
morphism. The multiplicative inverse of s/1is 1/s in R[S7!].
Finally, let R’ be a commutative ring and let 3 : R — R’ be aring
homomorphism such that the elements ¥(S) are units. There is a
map ¥’ : R[S™'] —» R’ defined by ¢'(r/s) := z,b(r)(z,b(s))_l. For any
r/s = r"/s", there exists t € S such that t(r's — rs") = 0 whence we
have Y(O)(P(r"P(s) — p(HP(s") = 0. As P(t), Y(s) and p(s") are
units, we obtain zp(r)(zp(s))_l = 1p(r”)(1,b(s”))_1. One verifies that
1’ is a ring homomorphism. By construction, we have ¥’ o7 = .
Furthermore, the map 3’ is determined by this relation because we
have 9'(r/s) = P'((r/1)(1/s)) = P'(r/1)P'(1/s) = P(r)$'(1/s) and
1=9'(1/1) = '(A/s) P’ (s/1) = P’ (1/s) P(s). O

2.4.4 Remark. For the map 7 to be bijection, it is necessary and suf-
ficient that every element s € S be a unit in R. The condition is
necessary because s/1 is unit in R[S~!]. It is sufficient because, for
allt € S, the element t is unitin R and f/t = ft~!/1in R[S7].

2.4.5 Definition. When multiplicative set S consists of the nonzero-
divisors in commutative ring R, R[S™!] is the total ring of fractions.
When R is a domain, the ring R[S™1] is the field of fractions of R.

2.4.6 Example. Given aring element f € Rand S := {f" | n € N},
we have Ry = R[S7'] = R[x]/{(xf —1). In particular, the Laurent
polynomial ring C[x, x~!] is the ring C[x],. <>

2.4.7 Definition. For any prime ideal P in commutative ring R, we
writes Rp for R[(R \ P)7!]. The elements f/s with f € P form an
ideal Pp in Rp. Every element not in Pp is a unit in Rp. It follows
that Pp is the unique maximal ideal in Rp. The process of passing
from the ring R to the ring Rp is called localization at P.

2.4.8 Example. For the prime ideal P = (0) in Z, we have Z;, = Q.
The ring C[x],p, = C(x) consists of all rational functions. <>

2.4.9 Example. For any prime number p, the ring Z,;,, consists of all
rational numbers m/n where the integer n is relative prime top. <
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Polynomials arise in many parts of mathematics. A polynomial with e )
More formally, an infinite sum with
coefficientsin a commutative ring R is alinear combination of power finitely many nonzero coefficients.
: . f e -1 — j
ofavariable: f:=a, x"+a,_; X" '+---+a, x+a, = Zj a; x’, where
a; € Rfor all j € N. The set of all polynomials is denoted by R|[x]

and the ring operations are defined by
; ; Iterating this construction yields
) k — +b)x) g b
Zj a; x- + Zk b x* = Zj(al + bj) X7 polynomial rings in more variables:
- xJ k) = ; ) xck
<Zjajx)(2kbkx)_Zk<2jank—J>x :

(RIx])[y] = (R[Y])[x] = R[x, y].
The monomials x/ are independent over R, so };, a; x/ = ¥, by x* if
and only if a; = b; for all j € N.

2.5.1 Proposition. Lety : R — R’ be a ring homomorphism.

» Themap ¥ q; xk 2, ¥(a) x/ defines a ring homomorphism from
R[x] to R'[x].

« For any ring element a € R’, there is a unique ring homomorphism
@ : R[x] — R’ that agrees with the map ¢ on constant polynomials

Comment on the Proof. The map ¢ is a composition of the first ring
homomorphism and the evaluation map ev, : R'[x] - R’ defined

by eva(f) := f(a@). O

2.5.2 Definition. For any nonzero polynomial f € R[x], the degree
deg(f) is the largest integer k such that the coefficient a; of the
monomial x¥ is nonzero. The nonzero element a,, € R satisfying
m = deg(f) is the leading coefficient of the polynomial. A monic
polynomial is one whose leading coefficient is 1.

2.5.3 Lemma. Let f and g be two nonzero polynomials in R[ x].

« Ifdeg(f) # deg(g), then the sum f + g is nonzero and its degree is
deg(f + g) = max(deg(f), deg(g)). Ifdeg(f) = deg(g), then the
degree of the sum satisfies deg(f + g) < deg(f).

« We havedeg(fg) < deg(f) + deg(g) and equality holds if the leading
coefficient of f or g is a nonzerodivisor in R.

Proof. Leta,, be theleading coefficient of f and let b, be the leading
coefficient of g. It follows that the leading coefficient the sum f + g
is a,, when m > n and b,, with m < n. When m = n, the coefficient
of x™ in the sum f + gis a,, + b, and the coefficients of all mono-
mials of higher-degree are zero, so deg(f + g) < m. The coefficient
of x™*" in the product fg is a,, b,, and the coefficients of all mono-
mials of higher-degree are zero, so deg(fg) < deg(f) + deg(g). O

2.5.4 Proposition. For any domain R, the polynomial ring R[x] is also
a domain and the units in R[x] are the units in R.
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Proof. Suppose that f and g are nonzero polynomials in R[x]. Since
deg(fg) = deg(f) + deg(g) > 0, it follows that fg # 0. If fg = 1,
then we have deg(f) + deg(g) = deg(1) = 0. Hence, f and g are
both polynomials of degree 0 and therefore elements of R. O

2.5.5 Theorem (Euclidean Division). Let f and g be nonzero elements
in R[x] of degrees m and n respectively. Denote the leading coefficient of
f bya,, and setk := max(n — m + 1,0). There exists q,r € R[x] such
thata¥, g = q f + r where deg(r) < m. When a,, is a nonzerodivisor in
R, the polynomials q and r are uniquely determined by these properties.

Proof. Whenn < m,takeq = 0andr = g. When n > m, we proceed
by induction on n. Set f := Z;"zo a; xJ and write b,, for the leading
coefficient of g. It follows that deg(ak, g — ak; ' b, x" " f) < n. The
induction hypothesis implies that, there exists p, r € R[x] such that
ak~(a,, g—b,x""™f) = p f+rwhere deg(r) < m. Hence, we obtain
ak g = (ak'b,x" ™ +p)f + rand q := ak' b, x""™ + p.

Consider q,q’,r,r € R[x]suchthatal,g = qf +r = q'f + 71
where deg(r) < mand deg(r') < m. Itfollows that (q—q') f = (r'—r)
and deg(r’ — r) < m. Since m + deg(q — q') = deg(¥' — r) < m, we
conclude thatq =q' andr = r'. O

2.5.6 Definition. A root of polynomial f in R[x] is a ring element
a € Rsuch thatev,(f) = f(a) = 0.

2.5.7 Corollary. For any polynomial f € R[x], there exists q € R[x]
such that f(x) = q(x) (x — a) if and only if we have f(a) = 0.

Proof. Euclidean division implies that there exists q and r in R[x]
such that f(x) = q(x) (x — a) + r(x) where deg(r) < 1. Hence, we
have r(x) € R. Evaluating at a yields f(a) = q(a)(0) + r, so we
obtain f(x) = q(x)(x — a) + f(a). O

2.5.8 Proposition. Let f be a polynomial in R[x] and leta € R in aring
element. For any nonnegative integer m € N, the following are equivalent:
(a) the polynomial f is divisible by (x — a)™ by not by (x — a)™+!;

(b) there exists g € R[x] such that f(x) = (x — a)™ g(x) and g(a) # 0.
Moreover, whenever f # 0, there exists a unique nonnegative integer m
satisfying these conditions.

Proof.

(a)= (b): Follows from Corollary 2.5.7.

(b) = (a): If f(x) = (x — a)™ g(x) where g does not have a as root,
then f is divisible by (x —a)™. Suppose that h € R[x] exists such
that f(x) = (x — a)™*! h(x). Since (x — a)™ is not a zerodivisor
in R[x], we would have g(x) = (x — a) h(x) which implies that
g(a) = 0 which is contradiction. O



