## Multiplicity of Roots 2.6

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-15

**2.6.1 Definition.** Let *m* be a positive integer. For any  $f \in R[x]$ , the ring element  $a \in R$  is a root of multiplicity m if f is divisible by  $(x-a)^m$  but not  $(x-a)^{m+1}$ . A root of multiplicity 1 is a *simple* root and a root of multiplicity two is a double root.

**2.6.2 Lemma.** Let m and n be the multiplicities of the root  $a \in R$  for the polynomials  $f \in R[x]$  and  $g \in R[x]$ .

- The sum f + g has a root of multiplicity at least min $\{m, n\}$  at a and is equal to  $min\{m, n\}$  if  $m \neq n$ .
- The product fg has a root of multiplicity at least m + n and it is equal to m + n if R is domain.

Sketch of Proof. Set  $f(x) = (x - a)^m p(x)$  and  $g(x) = (x - a)^n q(x)$ where  $p, q \in R[x]$  satisfy  $p(a) \neq 0 \neq q(a)$ . When  $m \leq n$ , it follows that  $f(x)+g(x)=(x-a)^m(p(x)+(x-a)^{m-n}g(x))$  and a is not a root of  $p(x) + (x - a)^{m-n} q(x)$ . We have  $f(x)g(x) = (x - a)^{m+n} p(x) q(x)$ and  $p(a) q(a) \neq 0$  if R is a domain.

**2.6.3 Proposition.** Let R be a domain. Given a nonzero  $f \in R[x]$  with distinct roots  $a_1, a_2, ..., a_\ell$  having multiplicities  $m_1, m_2, ..., m_\ell$ , there is a polynomial  $g \in R[x]$  such that  $a_1, a_2, ..., a_\ell$  are not roots of g and

$$f(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \cdots (x - a_\ell)^{m_\ell} g(x)$$

*Proof.* We proceed by induction on  $\ell$ . The case  $\ell = 1$  is covered by Proposition 2.5.8. Suppose that

$$f(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \cdots (x - a_{\ell-1})^{m_{\ell-1}} h(x)$$

Since *R* is a domain and the root  $a_{\ell}$  is distinct from  $a_1, a_2, ..., a_{\ell-1}$ , it follows that  $a_{\ell}$  is not a root of the polynomial

$$(x-a_1)^{m_1}(x-a_2)^{m_2}\cdots(x-a_{\ell-1})^{m_{\ell-1}}$$
.

The element  $a_{\ell}$  is a root of multiplicity  $m_{\ell}$  of the polynomial h and Proposition 2.5.8 yields  $h(x) = (x - a_{\ell})^{m_{\ell}} g(x)$  where  $a_1, a_2, ..., a_{\ell-1}$ are not roots of g. 

**2.6.4 Corollary.** Let R be a domain. Given nonzero polynomial f in R[x]of degree m, the sum of multiplicities of all the roots of f is at most m.  $\square$ 

**2.6.5 Example.** Over the ring  $R = \mathbb{Z}/\langle 2 \rangle \times \mathbb{Z}/\langle 2 \rangle$ , all four elements are roots of the polynomial  $x^2 - x \in R[x]$ .

2.6.6 Corollary. Let R be a domain and consider nonzero polynomials  $f,g \in R[x]$  of degree at most m. If there exists m+1 pairwise distinct elements  $a_0, a_1, ..., a_m$  in R such that  $f(a_i) = g(a_i)$  for all  $0 \le i \le m$ , then we have f = g.

*Proof.* The polynomial h := f - g has degree at most m and has at least m + 1 roots, so h = 0.

2.6.7 Proposition (Lagrange Interpolation). Let K be a field and let  $a_0, a_1, ..., a_m$  be m+1 distinct elements of K. For any  $b_0, b_1, ..., b_m \in K$ , there exists a unique polynomial  $f \in K[x]$  of degree at most m such that  $f(a_j) = b_j$  for all  $0 \le j \le m$ .

*Proof.* Uniqueness follows from Corollary 2.6.6. For all  $0 \le j \le m$ , consider

$$g_j(x) := \prod_{k \neq j} \frac{(x - a_k)}{(a_j - a_k)}.$$

It follows that  $\deg(g_j) = m$  and  $g_j(a_k) = \delta_{j,k}$ . Thus, we may take  $f(x) := \sum_{j=0}^m b_j g_j(x)$ .

**2.6.8 Proposition.** Let m be a positive integer. If  $a \in R$  is a root of the polynomial  $f \in R[x]$  having multiplicity m, then a is a root of the derivative  $Df \in R[x]$  having multiplicity at least m-1. When  $m \, 1_R \neq 0$  in R, then a is a root of Df having multiplicity m-1.

*Proof.* Proposition 2.5.8 establishes that there exists  $g \in R[x]$  such that  $f = (x - a)^m g$  and  $g(a) \neq 0$ . It follows that

$$Df = m(x-a)^{m-1}g + (x-a)^m Dg = (x-a)^{m-1}(mg + (x-a)Dg)$$

giving the first part. Since the evaluation map sends the polynomial mg + (x - a)Dg to the ring element mg(a), this ring element is nonzero when  $m1_R \neq 0$ .

2.6.9 Corollary. Let m be an integer such that  $m! 1_R \neq 0$  in the ring R. An element  $a \in R$  is a root of the polynomial  $f \in R[x]$  having multiplicity m if and only if a is a root of f, Df, ...,  $D^{m-1}f$  and not a root of  $D^mf$ .

*Proof.* Follows immediately from Proposition 2.6.8. □

Let m be a positive integer such that  $m \, 1_R = 0$  in R. For the polynomial  $f := x^m$ , we have  $Df = m \, x^{m-1} = 0$ , so the derivative has 0 as a root of arbitrarily high multiplicity.

## **Euclidean Domains** 2.7

2.7.1 **Definition.** A *Euclidean domain* is a domain *R* equipped with a function  $\partial: R \setminus \{0\} \to \mathbb{N}$  such that

- for all  $f, g \in R \setminus \{0\}$ , we have  $\partial(f) \leq \partial(fg)$ ;
- for all  $f \in R$  and all  $g \in R \setminus \{0\}$ , there exists  $q, r \in R$  such that f = qg + r and either r = 0 or  $\partial(r) < \partial(g)$ .

**2.7.2 Example.** The integers  $\mathbb{Z}$  form a Euclidean domain where the function  $\partial : \mathbb{Z} \setminus \{0\} \to \mathbb{N}$  is defined by  $\partial(m) := |m|$ .

2.7.3 Example. For any field K, the polynomial ring K[x] forms a Euclidean domain where the function  $\partial: K[x] \setminus \{0\} \to \mathbb{N}$  is defined by  $\partial(f) := \deg(f)$ .

2.7.4 Example. For any field K, the formal power series ring K[[x]]is a Euclidean domain where the function  $\partial: K[[x]] \setminus \{0\} \to \mathbb{N}$  is defined by  $\partial(f) = \operatorname{ord}(f)$  and

$$\operatorname{ord}(f) := \min \left( k \mid a_k \neq 0 \text{ where } f = \sum_{k \geq 0} a_k x^k \right).$$
  $\Leftrightarrow$ 

2.7.5 **Problem.** Show that the ring  $\mathbb{Z}[i]$  is a Euclidean domain where  $\partial: K[[x]] \setminus \{0\} \to \mathbb{N}$  is defined by  $\partial(a + bi) := a^2 + b^2$ .

*Geometric Solution.* The elements of  $\mathbb{Z}[i]$  form a square lattice in  $\mathbb{C}$ . The ideal  $\langle z \rangle$ , all multiples of z, forms a similar lattice: if we write  $z = re^{i\theta}$ , then the lattice corresponding to  $\langle z \rangle$  is obtained by rotating through the angle  $\theta$  followed by stretching by the factor r = |z|. It is clear that for every  $w \in \mathbb{C}$ , there is at least one point of the lattice corresponding to  $\langle z \rangle$  whose square distance from w is at most  $(1/2)|z|^2$ . Let that point be qz and set p := w - qz. It follows that  $|p|^2 \le (1/2)|z|^2 < |z|^2$  as required. Since there may be more than one choice for qz, this division with remainder is not unique.

*Algebraic Solution.* Divide  $w \in \mathbb{C}$  by z: w = cz where  $c = x + yi \in \mathbb{C}$ . Choose a nearest Gaussian integer:  $x := a + x_0$ ,  $y := b + y_0$  where  $a, b \in \mathbb{Z}$  and  $-1/2 \le x_0, y_0 < 1/2$ . It follows that the product (a+bi)zis the required point in  $\langle z \rangle$  because we have  $|x_0 + y_0i|^2 < 1/2$  and  $|w - (a + bi)z|^2 = |z(x_0 + y_0i)|^2 < (1/2)|z|^2.$ 

**2.7.6 Definition.** A *principal ideal domain* is a domain in which every ideal is principal.

2.7.7 Theorem. Every Euclidean domain is a principal ideal domain.

*Proof.* Let *I* be an ideal in a Euclidean domain *R*. When  $I = \langle 0 \rangle$ , the ideal *I* is principal, so we may assume  $I \neq \langle 0 \rangle$ . By the well-ordering property of the integers, the set of all degrees of nonzero elements

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-15

When  $m = \operatorname{ord}(f) \leqslant \operatorname{ord}(g) = n$ , we have f = 0g + f. Otherwise m > n, we have  $f = x^m p$  and  $g = x^n q$ where  $p, q \in K[[x]]$  are units, so  $f = x^{m-n} p q^{-1} g + 0.$ 

in *I* has a minimum, say *n*. Choose  $f \in I$  with  $\partial(f) = n$ . Since  $f \in I$ , we have  $\langle f \rangle \subseteq I$ . For any  $g \in I$ , there exists  $q, r \in R$  with g = qf + rand either r = 0 or  $\partial(r) < \partial(f)$ . However, we have  $r = f - qg \in I$ so our choice of f implies that r = 0. Therefore, we deduce that g = q f and  $I \subseteq \langle f \rangle$ .

**2.7.8 Problem.** Show that the ideal (2, x) in  $\mathbb{Z}[x]$  is not principal.

*Solution.* Suppose that  $\langle f \rangle = \langle 2, x \rangle$ . It follows that g f = 2 for some  $g \in \mathbb{Z}[x]$ . Since  $\deg(g) + \deg(f) = \deg(2) = 0$ , we see that  $f, g \in \mathbb{Z}$ . Hence, we have  $f = \{\pm 1, \pm 2\}$ . Since  $\langle 2, x \rangle$  is a maximal ideal, the element f cannot be a unit, so  $f = \pm 2$ . However, we would also have  $x \in \langle f \rangle$ , so x = 2h for some  $h \in \mathbb{Z}[x]$  which is absurd.

2.7.9 Problem. Show that the ideal  $(2, 1 - \sqrt{-3})$  in  $\mathbb{Z}[\sqrt{-3}] \subseteq \mathbb{C}$  is not principal.

*Solution.* Suppose that  $\langle a+b\sqrt{-3}\rangle=\langle 2,1-\sqrt{-3}\rangle$ . It follows that  $g(a+b\sqrt{-3})=2$  for some  $g\in\mathbb{Z}[\sqrt{-3}]$ . Taking absolute values in  $\mathbb{C}$ gives  $|g|(a^2 + 3b^2) = 2$ , so  $a^2 + 3b^2 \in \{\pm 1, \pm 2\}$ . Because  $a, b \in \mathbb{Z}$  we must have  $a = \pm 1$ , b = 0 which contradicts the fact that  $(2, 1 - \sqrt{-3})$ is a maximal ideal.

## 2.7.10 Example. The rings

- $\mathbb{Z}[\alpha] = \{a + b\alpha \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$  where  $\alpha := (1 + \sqrt{-19})/2$ .
- $\mathbb{R}[x,y]/\langle x^2+y^2+1\rangle$ ,
- $\mathbb{Q}[x,y]/\langle y^2-2x^2-5\rangle$ ,

are principal ideal domains but not Euclidean domains. For more details, see

- Jack C. Wilson, A principal ideal ring that is not a Euclidean ring, Mathematics Magazine 46 (1973) 34-38;
- Anthony J. Bevelacqua, A family of non-Euclidean PIDs, American Mathematical Monthly 123 (2016), no. 9, 936-939.