2.6 Multiplicity of Roots

2.6.1 Definition. Let m be a positive integer. For any f € R[x], the
ring element a € R is a root of multiplicity m if f is divisible by
(x — a)™ but not (x — a)™*!. A root of multiplicity 1 is a simple root
and a root of multiplicity two is a double root.

2.6.2 Lemma. Let m and n be the multiplicities of the roota € R for the

polynomials f € R[x] and g € R[x].

« Thesum f + g has a root of multiplicity at least min{m, n} ata and is
equal to min{m, n} if m # n.

« The product fg has a root of multiplicity at least m + n and it is equal
tom + n if R is domain.

Sketch of Proof. Set f(x) = (x —a)" p(x) and g(x) = (x — a)" q(x)
where p, q € R[x] satisfy p(a) # 0 # q(a). When m < n, it follows
that f(x)+g(x) = (x—a)™ (p(x)+(x—a)™ " q(x))and aisnotaroot
of p(x) + (x —a)™ " q(x). We have f(x) g(x) = (x—a)™*" p(x) q(x)
and p(a) gq(a) # 0 if R is a domain. O

2.6.3 Proposition. Let R be a domain. Given a nonzero f € R[x] with
distinct roots a;, a,, ..., a, having multiplicities m,, m,, ..., m,, thereis a
polynomial g € R[x] such thata,, a,,...,a, are not roots of g and

J) =(x—a)™(x—ay))" - (x —a,)™ g(x)

Proof. We proceed by induction on ¢. The case ¢ = 1 is covered by
Proposition 2.5.8. Suppose that

f(X) =(x - al)m1 (x - a,)" ... (x - aé)_l)mg_l h(x)

Since R is a domain and the root a, is distinct from a;, a,, ..., a,_1, it
follows that a, is not a root of the polynomial

(x —a)™ (x = az)™ - (x = ap_y)™.

The element a, is a root of multiplicity m, of the polynomial & and
Proposition 2.5.8 yields h(x) = (x — a,)™ g(x) where a,,a,,...,a,_;
are not roots of g. O

2.6.4 Corollary. LetR be a domain. Given nonzero polynomial f in R[x]
of degree m, the sum of multiplicities of all the roots of f is at mostm. [

2.6.5 Example. Over the ring R = Z/(2) X Z/(2), all four elements
are roots of the polynomial x?> — x € R[x]. <&

2.6.6 Corollary. Let R be a domain and consider nonzero polynomials
f>8 € R[x] of degree at most m. If there exists m + 1 pairwise distinct
elements ay, a,, ..., a,, in R such that f(a;) = g(a;) forall0 < i < m,
then we have f = g.
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Let m be a positive integer such that
m1lr = 0in R. For the polynomial

f=x",wehave Df = mx™1 =0,

so the derivative has 0 as a root of
arbitrarily high multiplicity.

Proof. The polynomial h := f — g has degree at most m and has at
least m + 1 roots, so h = 0. O

2.6.7 Proposition (Lagrange Interpolation). Let K be a field and let
ay, a, ..., a,, bem + 1 distinct elements of K. For any b, by, ..., b,, € K,
there exists a unique polynomial f € K[x] of degree at most m such that
f(aj) =bjforall0< j<m.

Proof. Uniqueness follows from Corollary 2.6.6. For all 0 < j < m,
consider

g = [[ S

k+#j (aj - ak) ’

It follows that deg(g;) = m and gj(ay) = §;x. Thus, we may take
F@)i= 2 by gy(x). o

2.6.8 Proposition. Let m be a positive integer. Ifa € R is a root of
the polynomial f € R[x] having multiplicity m, then a is a root of the
derivative D f € R[x] having multiplicity at leastm — 1. Whenm 1 # 0
inR, thena is a root of D f having multiplicity m — 1.

Proof. Proposition 2.5.8 establishes that there exists g € R[x] such
that f = (x — a)™ g and g(a) # 0. It follows that

Df =m(x—a)"'g+(x—a)"Dg = (x—a)"(mg+ (x—a)Dg)

giving the first part. Since the evaluation map sends the polynomial
mg + (x — a) Dg to the ring element m g(a), this ring element is
nonzero when m 1y # 0. O

2.6.9 Corollary. Let m be an integer such that m! 1z # 0 in the ring R.
Anelementa € R isaroot of the polynomial f € R[x] having multiplicity
mif and only ifa is aroot of f, Df,..., D™~ f and not a root of D™ f.

Proof. Follows immediately from Proposition 2.6.8. O



2.7 Euclidean Domains

2.7.1 Definition. A Euclidean domain is a domain R equipped with a

function 0 : R \ {0} - N such that

« forall f,g € R\ {0}, we have 3(f) < 3(fg);

« forall f € Rand all g € R\ {0}, there exists q,r € R such that
f =qg+randeither r = 0 or 3(r) < 9(g).

2.7.2 Example. The integers Z form a Euclidean domain where the
function 8 : Z \ {0} — N is defined by 8(m) := |ml|. <&

2.7.3 Example. For any field K, the polynomial ring K[x] forms a
Euclidean domain where the function 8 : K[x] \ {0} - Nis defined

by 8(f) := deg(f). &

2.7.4 Example. For any field K, the formal power series ring K[[x]]
is a Euclidean domain where the function 9 : K[[x]] \ {0} - N is
defined by 8(f) = ord(f) and

ord(f) := min(k | aj # 0 where f = )’ akxk). 3

k>0

2.7.5 Problem. Show that the ring Z]i] is a Euclidean domain where
3 : K[[x]] \ {0} - N is defined by 8(a + bi) := a* + b>.

Geometric Solution. The elements of Z[i] form a square lattice in C.
The ideal {z), all multiples of z, forms a similar lattice: if we write
z = re'%, then the lattice corresponding to (z) is obtained by rotat-
ing through the angle 6 followed by stretching by the factor r = |z|.
It is clear that for every w € C, there is at least one point of the lat-
tice corresponding to (z) whose square distance from w is at most
(1/2) |z|*. Let that point be gz and set p := w — qz. It follows that
|p|2 < (1/2) |z|2 < |z|2 as required. Since there may be more than
one choice for gz, this division with remainder is not unique. O

Algebraic Solution. Divide w € Cby z: w = cz wherec = x + yi € C.
Choose a nearest Gaussian integer: x := a + x4, ¥ := b + y, where
a,be Zand —1/2 < x4,y < 1/2. It follows that the product (a + bi)z
is the required point in (z) because we have |x, + yoil2 < 1/2 and
lw = (a + bi)z|” = |2(xo + yob)|” < (1/2) |z/". O

2.7.6 Definition. A principalideal domainis a domain in which every
ideal is principal.

2.7.7 Theorem. Every Euclidean domain is a principal ideal domain.

Proof. LetI be anideal in a Euclidean domain R. When I = (0), the
ideal I is principal, so we may assume I # (0). By the well-ordering
property of the integers, the set of all degrees of nonzero elements
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When m = ord(f) < ord(g) = n, we
have f = 0g + f. Otherwise m > n,
we have f = x™pandg = x"q
where p,q € K][[x]] are units, so
f=x""pq'g+o.
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in I has a minimum, say n. Choose f € I with 8(f) = n. Since f € I,
we have (f) C I. For any g € I, there exists q,y e Rwithg=q f +r
and either r = 0 or 8(r) < 8(f). However, we haver = f —qg € I
so our choice of f implies that r = 0. Therefore, we deduce that

2.7.8 Problem. Show that the ideal (2, x) in Z[x] is not principal.

Solution. Suppose that (f) = (2, x). It follows that g f = 2 for some
g € Z[x]. Since deg(g) + deg(f) = deg(2) = 0, we see that f,g € Z.
Hence, we have f = {+1,+2}. Since (2, x) is a maximal ideal, the
element f cannot be a unit, so f = *2. However, we would also
have x € (f), so x = 2h for some h € Z[x] which is absurd. O

2.7.9 Problem. Show that the ideal (2,1 —+/—3)in Z[y—3] € C is
not principal.

Solution. Suppose that {(a + b\/—_3> = (2,1— \/—_3>. It follows that
gla+ b\/—3) = 2 for some ge Z[\=3]. Taking absolute valuesin C
gives |g| (a® + 3b?) = 2, so a? + 3b? € {+1, +2}. Because a,b € Z we
must have a = +1, b = 0 which contradicts the fact that (2,1 — y/—=3)
is a maximal ideal. O

2.7.10 Example. The rings

« Zla] ={a+ba|a,beZ}c Cwhere a:= (1++-19)/2,

« Rx,p1/{(x*+y*+1),

+ Qlx, Y/ (3? - 2x2 - 5),

are principal ideal domains but not Euclidean domains. For more

details, see

« Jack C. Wilson, A principal ideal ring that is not a Euclidean ring,
Mathematics Magazine 46 (1973) 34-38;

« Anthony J. Bevelacqua, A family of non-Euclidean PIDs, American
Mathematical Monthly 123 (2016), no. 9, 936-939. &



