2.8 Greatest Common Divisors

2.8.1 Definition. Let R be a commutative ring and let a,b € R be
nonzero ring elements. A ring element d € R is a greatest common
divisor of a and b, denoted by gcd(a, b), if

« the element d divides both a and b, and

+ any element c € R, that divides both a and b, also divides d.

Two ring elements are coprime if 1 is a greatest common divisor.

2.8.2 Example. In a field, every nonzero element is a greatest com-
mon divisor for any pair of nonzero elements. <>

2.8.3 Example. A greatest common divisor may not exist. In the
domain R = Z[/=5], we have 9 = (3)(3) = (2 + V/=5)(2 — V-5).
Both 3and 2 + \/—_5 divide 9, but neither divides the other. Hence,
9 and 6 + 3y/—5 do not have a greatest common divisor. <

2.8.4 Lemma. LetR be a domain and let a, b be nonzero ring elements
inR. Assume thatd € R is a greatest common divisor fora and b. A ring
elemente € R is also a greatest common divisor for a and b if and only if
there exists a unitu € R such thate = ud.

Proof.

(=) Suppose that e = gecd(a, b). Since e divides a and b, it follows
that e divides d. Similarly, d divides a and b, so d divides e.
Hence, there exists elements u and v in R such thatd = ue and
e = vd. It follows that d = ue = uvd. Because R is a domain,
we deduce that 1 = uv.

(<) Suppose there exists a unit 4 € R such that e = ud. Since d
divides a, there exists x € R such that a = xd = xue, so e
divides a. By symmetry, we see that e divides b. Assume that c
divides a and b. Since d is a greatest common divisor for a and
b, there exists w € R such thatd = wc, so e = uwc. Thus, y is
also a greatest common divisor for a and b. O

2.8.5 Theorem. Let R be a principal ideal domain. For any nonzero
ring elements a,b € R, there exists ring elements x,y € R such that
ged(a, b) = ax + by. In particular, we have (gcd(a, b)) = (a, b).

Proof. SetI :=(a,b). Since R is a principal ideal domain, there is a
ring element d € R such that I = (d). It follows thatd = ax + by
for some x,y € R. Both a and b are in I and [ is generated by d, so
d divides a and b. On the other hand, if a ring element ¢ divides a
and b, then c divides ax + by = d. Hence, we see that d = gecd(a, b).

Any generator for the ideal (a, b) is a greatest common divisor
of a and b. Lemma 2.8.4 shows that, for any two greatest common
divisors d and e, there exists a unit u € R such that e = ud and
d = u~'e. Thus, we have (e) C (d) and (d) C (e), so (d) = {(e). O
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When R = Z, we typically impose
uniqueness by requiring the greatest
common divisor to be positive. When
K is field and R = K|[x], we force
uniqueness by requiring the greatest
common divisor to be monic.

A domain in which a greatest com-
mon divisor of every pair of nonzero
elements is a linear combination of
the two elements is a Bézout domain.
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Table 2.1: Values of the local variables
when using Algorihm 2.8.7 to compute
ged(1254,1110)

Table 2.2: Values of the local variables
when using Algorihm 2.8.7 to compute
ged(x3 +2x2 +2,x2 +2x+1)

Greatest common divisors are computable in Euclidean domains.

2.8.6 Lemma. LetR be a Euclidean domain and let a, b be nonzero ring
elements in R. For any ring elements a, r € R such thata = qb + r with
r # 0, we have gcd(a, b) = ged(b, r).

Proof. Letd := gcd(a, b). Since d divides a and b, this ring element
divides a — gb = r. Moreover, any ring element c, dividing b and r,
also divides a = bq + r. It follows that c divides d. We deduce that
d is a greatest common divisor of b and r. O

2.8.7 Algorithm (Extended Euclidean Algorithm).
Input: Letaand b be elements in a Euclidean domain R.
Output: Ring elements x,y € R such that ax + by = ged(a, b).

r,r,s',s,t',t):=(a,b,1,0,0,1);
While r # 0 do
Find q,r” € R such thatr' = qr + r” and 8(¢") < 8(r);
(r,r,s',s,t',t) = (r,¥ —qr,s,s’ —qs,t,t' —qt);
Return (s', t').

Outline of Proof. From the remainders r” , we obtain a decreasing
sequence of nonnegative integer 8(r”), so eventually one of the re-
mainders will be zero. Thus, the while loop must terminate.
Lemma 2.8.6 proves that ged(a,b) = ged(r',r), and one shows
that the equations » = sa + tband r' = s’ a + t' b hold throughout
the calculation. O

2.8.8 Example. When a = 1254, and b = 1110, Algorithm 2.8.7 gives

!

r r s s t' t q
1254 1110 1 0 0 1 1
1110 144 0 1 1 -1 7

144 102 1 -7 -1 8 1
102 42 =7 8 8 -9 2

42 18 8§ =23 -9 26 2

18 6 -—23 54 26 —61 3

6 0 54 -185 —61 209

We deduce that (54)(1254)+(—61)(1110) = 6 = ged(1254,1110). <

2.8.9 Example. When R = F;[x], f = x3+2x?+2,and g = x>+2x+1,
Algorithm 2.8.7 gives

r r s’ S t t q
X3+2x2+2 x2+2x+1 1 0 0 1 X
x> 4+2x+1 2x + 2 0 1 1 2x 2x + 2

2Xx + 2 0 1 x4+1 2x 2x2+2x+1

We have (1)(x3 +2x%+2) +(2x)(x?2+2x+1) = 2x+2 = ged(f, g). ¢



2.9 Factorization

2.9.1 Definition. A ring element a is irreducible if a is nonzero, a is
not a unit, and the relation a = bc implies that either b or c is a unit.

2.9.2 Example. The quotientring Z/(6) has no irreducible elements
because 2 = (2)(4), 3 = (3)(3), 4 = (2)(2), and (Z/(6))* = {1,5}.
Without irreducibles, an element may have many distinct factoriza-

tions: 4 = (2)(2) = Q@))Q2) = QP@)@)(2) = ---. o

2.9.3 Lemma. Let R be a domain. If the ideal {f) is prime, then the ring
element is irreducible.

Proof. Suppose that f = gh. Since the principal ideal (f) is prime,
Proposition 2.3.8 shows that the ring element f divides either g or h.
Without loss of generality, assume that f divides g, so there exists
q € Rsuch that g = qf. It follows that f = gh = qfh. Since Risa
domain, we deduce that1 = gh so hisaunitand f isirreducible. [

2.9.4 Example. Consider the subring C[x?, x3] ¢ C[x]. Comparing
degrees, we see that the elements x? and x* are irreducible. They
are not prime because x? divides (x*)? = x° but x? does not divide x3
and x3 divides x* x? = x% but x3 does not divide either x* or x2. <

2.9.5 Problem. Show that 2 € Z[v/ —3] is irreducible but not prime.

Solution. Suppose 2 = (a + b\/=3)(c + d\/=3) with a,b,c,d € Z.
Taking conjugates gives 2 = (a — bV =3)(c — dv/=3). Multiplying
these equations gives 4 = (a? + 3b?)(c? + 3d?). Since the equation
x% + 3y? = 2 has no integral solutions, it follows that a® + 3b* = 1
anda = +1, b = 0. Since 2(p + gy —3) = 1 has no integral solutions,
the ring element 2 is not a unit. We see that 2 is irreducible. To see
that 2 is not prime, observe that 2 divides 4 = (1 + v =3)(1 —/=3),
but 2 does not divide either factor. O

2.9.6 Proposition. Let R be a principal ideal domain. For any element
f € R, the following are equivalent:

(a) thering element f is irreducible;

(b) (f) is a nonzero maximal ideal;

(¢) (f)is anonzero prime ideal.

Proof.

(a)=>(b): Suppose (f) C (g) for some g € R. Equivalently, there
exists h € R such that f = gh. Since f isirreducible, either g or h
is a unit, so (f) = (g) or (g) = R. Because every ideal is prinicipal,
we see that (f) is maximal.

(b) =(c): Every nonzero maximal ideal is a nonzero prime ideal.

(c) =(a): Follows from Lemma 2.9.3. O
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2.9.7 Definition. A domain R is a unique factorization domain if
. . €j
« every nonzero f € R can be written in the form f = u H;nzl gj’
where u is a unit, each 8j is irreducible, and ej € N;

. e; €; . .
o if f = uH;.nzl gj’ = vl_[;.l=1 hj’ are two such factorizations then

we have m = n and g; = cjh(;) for some units ¢; and o € &,,,.

2.9.8 Proposition. LetR be a domain in which every nonzero nonunit is
a product of irreducibles. The ring R to be a unique factorization domain
if and only if, for any irreducible element f € R, the ideal (f) is prime.

Proof.

(=) Suppose that R is a unique factorization domain. If g,h € R,
and gh € (f), then there exists a ring element g € R such that
gh = qf. Factor g, h, and q into irreducibles. Uniqueness of fac-
torization implies that the irreducible uf, for some unit u € R
appears on the left side. This element arose as a factor of either
g or h, so we see that g € (f) or h € (f). Proposition 2.3.8 shows
the principal ideal (f) is prime.

(<) Suppose that any principal ideal generated by an irreducible
element is prime. Consider two factorizations

818 - 8&m =hihy -+ hy

where g; € R and hy € R are irreducible forall1 < j < m
and 1 < k € n. We proceed, by induction on max{m, n} > 1, to
show that m = n and g; = ¢;j hy(;) for some units ¢; and o € ©,,,.
The base step max{m, n} = 1 has g; = h; and the claim is trivial.
For the inductive step, the given equation shows that g, divides
h, h, --- h,. By hypothesis, the ideal (g,,) is prime, so there exists
1 £ k < nsuchthat g, divides h;. Since h; isirreducible, there ex-
ists a unit ¢ such that g,, = ch,. Canceling g; from both sides
vields g, 85 - 8m_1 = Cxhy  hy -+ hg_y hyyq -+ hy,. The induction
hypothesis establishes that m —1 = n — 1 and g; = c;j hy;) for
some units¢; €R, forall2< j<m—-1,andoc € ©,,_;. O



