## 2.8 **Greatest Common Divisors**

**2.8.1 Definition.** Let R be a commutative ring and let  $a, b \in R$  be nonzero ring elements. A ring element  $d \in R$  is a *greatest common divisor* of a and b, denoted by gcd(a, b), if

- the element *d* divides both *a* and *b*, and
- any element  $c \in R$ , that divides both a and b, also divides d. Two ring elements are *coprime* if 1 is a greatest common divisor.
- 2.8.2 Example. In a field, every nonzero element is a greatest common divisor for any pair of nonzero elements.
- 2.8.3 Example. A greatest common divisor may not exist. In the domain  $R = \mathbb{Z}[\sqrt{-5}]$ , we have  $9 = (3)(3) = (2 + \sqrt{-5})(2 - \sqrt{-5})$ . Both 3 and  $2 + \sqrt{-5}$  divide 9, but neither divides the other. Hence, 9 and 6 +  $3\sqrt{-5}$  do not have a greatest common divisor.
- **2.8.4 Lemma.** Let R be a domain and let a, b be nonzero ring elements in R. Assume that  $d \in R$  is a greatest common divisor for a and b. A ring element  $e \in R$  is also a greatest common divisor for a and b if and only if there exists a unit  $u \in R$  such that e = ud.

Proof.

- $(\Rightarrow)$  Suppose that  $e = \gcd(a, b)$ . Since e divides a and b, it follows that e divides d. Similarly, d divides a and b, so d divides e. Hence, there exists elements u and v in R such that d = ue and e = vd. It follows that d = ue = uvd. Because R is a domain, we deduce that 1 = uv.
- $(\Leftarrow)$  Suppose there exists a unit  $u \in R$  such that e = ud. Since d divides a, there exists  $x \in R$  such that a = xd = xue, so e divides a. By symmetry, we see that e divides b. Assume that c divides a and b. Since d is a greatest common divisor for a and b, there exists  $w \in R$  such that d = wc, so e = uwc. Thus, y is also a greatest common divisor for *a* and *b*.
- 2.8.5 Theorem. Let R be a principal ideal domain. For any nonzero ring elements  $a, b \in R$ , there exists ring elements  $x, y \in R$  such that gcd(a, b) = ax + by. In particular, we have  $\langle gcd(a, b) \rangle = \langle a, b \rangle$ .

*Proof.* Set  $I := \langle a, b \rangle$ . Since R is a principal ideal domain, there is a ring element  $d \in R$  such that  $I = \langle d \rangle$ . It follows that d = ax + byfor some  $x, y \in R$ . Both a and b are in I and I is generated by d, so d divides a and b. On the other hand, if a ring element c divides a and b, then c divides ax + by = d. Hence, we see that  $d = \gcd(a, b)$ .

Any generator for the ideal  $\langle a, b \rangle$  is a greatest common divisor of *a* and *b*. Lemma 2.8.4 shows that, for any two greatest common divisors d and e, there exists a unit  $u \in R$  such that e = ud and  $d = u^{-1}e$ . Thus, we have  $\langle e \rangle \subseteq \langle d \rangle$  and  $\langle d \rangle \subseteq \langle e \rangle$ , so  $\langle d \rangle = \langle e \rangle$ . 

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-20

When  $R = \mathbb{Z}$ , we typically impose uniqueness by requiring the greatest common divisor to be positive. When K is field and R = K[x], we force uniqueness by requiring the greatest common divisor to be monic.

A domain in which a greatest common divisor of every pair of nonzero elements is a linear combination of the two elements is a Bézout domain. Greatest common divisors are computable in Euclidean domains.

2.8.6 Lemma. Let R be a Euclidean domain and let a, b be nonzero ring elements in R. For any ring elements a,  $r \in R$  such that a = qb + r with  $r \neq 0$ , we have gcd(a, b) = gcd(b, r).

*Proof.* Let  $d := \gcd(a, b)$ . Since d divides a and b, this ring element divides a - qb = r. Moreover, any ring element c, dividing b and r, also divides a = bq + r. It follows that c divides d. We deduce that d is a greatest common divisor of b and r.

2.8.7 Algorithm (Extended Euclidean Algorithm).

Input: Let a and b be elements in a Euclidean domain R.

Output: Ring elements  $x, y \in R$  such that  $ax + by = \gcd(a, b)$ .

$$(r', r, s', s, t', t) := (a, b, 1, 0, 0, 1);$$
  
While  $r \neq 0$  do

Find  $q, r'' \in R$  such that r' = q r + r'' and  $\partial(r'') < \partial(r)$ ; (r', r, s', s, t', t) := (r, r' - q r, s, s' - q s, t, t' - q t); Return (s', t').

*Outline of Proof.* From the remainders r'', we obtain a decreasing sequence of nonnegative integer  $\partial(r'')$ , so eventually one of the remainders will be zero. Thus, the while loop must terminate.

Lemma 2.8.6 proves that gcd(a, b) = gcd(r', r), and one shows that the equations  $r = s \, a + t \, b$  and  $r' = s' \, a + t' \, b$  hold throughout the calculation.

**2.8.8** Example. When a = 1254, and b = 1110, Algorithm 2.8.7 gives

Table 2.1: Values of the local variables when using Algorihm 2.8.7 to compute gcd(1254, 1110)

| r'   | r    | S'         | S          | t'         | t          | q |
|------|------|------------|------------|------------|------------|---|
| 1254 | 1110 | 1          | 0          | 0          | 1          | 1 |
| 1110 | 144  | 0          | 1          | 1          | -1         | 7 |
| 144  | 102  | 1          | <b>-</b> 7 | -1         | 8          | 1 |
| 102  | 42   | <b>-</b> 7 | 8          | 8          | <b>-</b> 9 | 2 |
| 42   | 18   | 8          | -23        | <b>-</b> 9 | 26         | 2 |
| 18   | 6    | -23        | 54         | 26         | -61        | 3 |
| 6    | 0    | 54         | -185       | -61        | 209        |   |
|      |      |            |            |            |            |   |

We deduce that  $(54)(1254)+(-61)(1110) = 6 = \gcd(1254, 1110)$ .  $\diamondsuit$ 

**2.8.9 Example.** When  $R = \mathbb{F}_3[x]$ ,  $f = x^3 + 2x^2 + 2$ , and  $g = x^2 + 2x + 1$ , Algorithm 2.8.7 gives

Table 2.2: Values of the local variables when using Algorihm 2.8.7 to compute  $gcd(x^3 + 2x^2 + 2, x^2 + 2x + 1)$ 

$$\frac{r'}{x^3 + 2x^2 + 2} \frac{r}{x^2 + 2x + 1} \frac{s'}{1} \frac{s}{0} \frac{t'}{0} \frac{t}{0} \frac{q}{1}$$

$$\frac{x^3 + 2x^2 + 2}{x^2 + 2x + 1} \frac{2x + 2}{1} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{x}{0}$$

$$\frac{x^2 + 2x + 1}{2x + 2} \frac{2x + 2}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{x}{0} \frac{1}{0} \frac{x}{0}$$

$$\frac{x}{0} \frac{1}{0} \frac{x}{0} \frac{1}{0} \frac{x}{0} \frac{1}{0} \frac{x}{0} \frac{1}{0} \frac{x}{0}$$
We have  $(1)(x^3 + 2x^2 + 2) + (2x)(x^2 + 2x + 1) = 2x + 2 = \gcd(f, g)$ .  $\Rightarrow$ 

## 2.9 **Factorization**

Copyright © 2020, Gregory G. Smith Last updated: 2020-10-19

2.9.1 **Definition**. A ring element *a* is *irreducible* if *a* is nonzero, *a* is not a unit, and the relation a = bc implies that either b or c is a unit.

**2.9.2 Example.** The quotient ring  $\mathbb{Z}/\langle 6 \rangle$  has no irreducible elements because 2 = (2)(4), 3 = (3)(3), 4 = (2)(2), and  $(\mathbb{Z}/\langle 6 \rangle)^{\times} = \{1, 5\}$ . Without irreducibles, an element may have many distinct factorizations:  $4 = (2)(2) = (2)(2)(2)(2) = (2)(2)(2)(2)(2)(2) = \cdots$ .

**2.9.3 Lemma.** Let R be a domain. If the ideal  $\langle f \rangle$  is prime, then the ring element is irreducible.

*Proof.* Suppose that f = gh. Since the principal ideal  $\langle f \rangle$  is prime, Proposition 2.3.8 shows that the ring element f divides either g or h. Without loss of generality, assume that f divides g, so there exists  $q \in R$  such that g = qf. It follows that f = gh = qfh. Since R is a domain, we deduce that 1 = qh so h is a unit and f is irreducible.  $\square$ 

**2.9.4 Example.** Consider the subring  $\mathbb{C}[x^2, x^3] \subset \mathbb{C}[x]$ . Comparing degrees, we see that the elements  $x^2$  and  $x^3$  are irreducible. They are not prime because  $x^2$  divides  $(x^3)^2 = x^6$  but  $x^2$  does not divide  $x^3$ and  $x^3$  divides  $x^4 x^2 = x^6$  but  $x^3$  does not divide either  $x^4$  or  $x^2$ .  $\diamondsuit$ 

**2.9.5 Problem.** Show that  $2 \in \mathbb{Z}[\sqrt{-3}]$  is irreducible but not prime.

Solution. Suppose  $2 = (a + b\sqrt{-3})(c + d\sqrt{-3})$  with  $a, b, c, d \in \mathbb{Z}$ . Taking conjugates gives  $2 = (a - b\sqrt{-3})(c - d\sqrt{-3})$ . Multiplying these equations gives  $4 = (a^2 + 3b^2)(c^2 + 3d^2)$ . Since the equation  $x^2 + 3y^2 = 2$  has no integral solutions, it follows that  $a^2 + 3b^2 = 1$ and  $a = \pm 1$ , b = 0. Since  $2(p + q\sqrt{-3}) = 1$  has no integral solutions, the ring element 2 is not a unit. We see that 2 is irreducible. To see that 2 is not prime, observe that 2 divides  $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ , but 2 does not divide either factor.

**2.9.6 Proposition.** *Let* R *be* a principal ideal domain. For any element  $f \in R$ , the following are equivalent:

- (a) the ring element f is irreducible;
- (b)  $\langle f \rangle$  is a nonzero maximal ideal;
- (c)  $\langle f \rangle$  is a nonzero prime ideal.

## Proof.

(a)  $\Rightarrow$  (b): Suppose  $\langle f \rangle \subseteq \langle g \rangle$  for some  $g \in R$ . Equivalently, there exists  $h \in R$  such that f = gh. Since f is irreducible, either g or h is a unit, so  $\langle f \rangle = \langle g \rangle$  or  $\langle g \rangle = R$ . Because every ideal is prinicipal, we see that  $\langle f \rangle$  is maximal.

- (b)  $\Rightarrow$  (c): Every nonzero maximal ideal is a nonzero prime ideal.
- (c)  $\Rightarrow$  (a): Follows from Lemma 2.9.3.

- **2.9.7 Definition.** A domain *R* is a *unique factorization domain* if
- every nonzero  $f \in R$  can be written in the form  $f = u \prod_{i=1}^m g_i^{e_i}$ where *u* is a unit, each  $g_i$  is irreducible, and  $e_i \in \mathbb{N}$ ;
- if  $f = u \prod_{j=1}^{m} g_j^{e_j} = v \prod_{j=1}^{n} h_j^{e_j}$  are two such factorizations then we have m = n and  $g_j = c_j h_{\sigma(j)}$  for some units  $c_i$  and  $\sigma \in \mathfrak{S}_m$ .
- **2.9.8 Proposition.** Let R be a domain in which every nonzero nonunit is a product of irreducibles. The ring R to be a unique factorization domain if and only if, for any irreducible element  $f \in R$ , the ideal  $\langle f \rangle$  is prime.

## Proof.

- $(\Rightarrow)$  Suppose that R is a unique factorization domain. If  $g, h \in R$ , and  $gh \in \langle f \rangle$ , then there exists a ring element  $q \in R$  such that gh = qf. Factor g, h, and q into irreducibles. Uniqueness of factorization implies that the irreducible uf, for some unit  $u \in R$ appears on the left side. This element arose as a factor of either *g* or *h*, so we see that  $g \in \langle f \rangle$  or  $h \in \langle f \rangle$ . Proposition 2.3.8 shows the principal ideal  $\langle f \rangle$  is prime.
- (⇐) Suppose that any principal ideal generated by an irreducible element is prime. Consider two factorizations

$$g_1 g_2 \cdots g_m = h_1 h_2 \cdots h_n$$

where  $g_j \in R$  and  $h_k \in R$  are irreducible for all  $1 \leq j \leq m$ and  $1 \le k \le n$ . We proceed, by induction on  $\max\{m, n\} \ge 1$ , to show that m = n and  $g_j = c_j h_{\sigma(j)}$  for some units  $c_j$  and  $\sigma \in \mathfrak{S}_m$ . The base step  $\max\{m, n\} = 1$  has  $g_1 = h_1$  and the claim is trivial. For the inductive step, the given equation shows that  $g_m$  divides  $h_1 h_2 \cdots h_n$ . By hypothesis, the ideal  $\langle g_m \rangle$  is prime, so there exists  $1 \le k \le n$  such that  $g_m$  divides  $h_k$ . Since  $h_k$  is irreducible, there exists a unit  $c_k$  such that  $g_m = c_k h_k$ . Canceling  $g_1$  from both sides yields  $g_1 g_2 \cdots g_{m-1} = c_k h_1 h_2 \cdots h_{k-1} h_{k+1} \cdots h_n$ . The induction hypothesis establishes that m-1=n-1 and  $g_i=c_i h_{\sigma(i)}$  for some units  $c_i \in R$ , for all  $2 \le j \le m-1$ , and  $\sigma \in \mathfrak{S}_{m-1}$ .