210 Noetherian Rings

2.10.1 Definition. A ring R is noetherian if every ascending chain of
idealsin R is eventually constant. More explicitly, for any increasing
sequence of ideals

Iy Ch o Chey CTg Clieyr C o0,
there exists a nonnegative integer m such thatI,, = I,,,,; = --
2.10.2 Example. Having only two ideals, any field is noetherian. <

2.10.3 Example. The polynomial ring Q[x,, X;, X, ... | with infinitely
many variables is non-noetherian because there exists an increas-
ing sequence of distinct ideals (x,) C (Xg, X1) C (Xg, X1, X2) C +=-. <

2.10.4 Lemma. LetR bering. For any ascending chainly CI, CI, C -
of ideals in R, the unionI = U;lo Ij is an ideal in R. Moreover, when I is
finitely generated, there exists a nonnegative integer m such thatI = I,,,.
Proof. Let f,g € I and r € R. Hence, there exists nonnegative inte-
gers iand j such that f € I; and g € I;. Without loss of generality,
we may assume j > i. Since I; C I;, we have f € I;. Since I; is an
ideal, it follows thatrf + g € I; CI,solis anideal

Suppose that I = {f;, f2,..., fn). Foreach 1 <i < n, there exists a
nonnegative integer ¢(i) such that f; € I,(;. Setting

m = max{¢(1),¢(2),--- ,¢(n)},

we have f; € I, for all 1 < i € n. Therefore, we conclude that
I=(1,f2sfuyCIl,CI,sol =1,. O

2.10.5 Theorem. A commutative ring R is noetherian if and only if every
ideal in R is finitely generated.

Proof.

(=) SupposethatRisnoetherianandletIbeanidealinR. IfI = (0),
then it is certainly finitely generated. Otherwise, pick a nonzero
ring element f, € I. If I = (f,), then again I is finitely generated.
Otherwise, pick a ring element f; € I \ (f,). Again, if I = (f,, f1)
then I is finitely generated. Otherwise, continue this process. If
one does not produce a finite set of generators of I, then we would
have the ascending chain (fy) C (fo, f1) € (fo,f1,f2) C -+ of
ideal, contradicting noetherian condition.

(«) Suppose that every ideal in R is finitely generated. Consider an
ascending chain I, C I; C I, C --- of ideals in the ring R and the
unionI := U;ozo I;. Lemma 2.10.4 shows that ] isideal. Everyideal
in R is finitely generated, so Lemma 2.10.4 also shows that there
is a nonnegative integer m such thatl =1, =I,,,; = ---. O
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For any field K, the rings Z, K[x], and
K[[x]] are noetherian.

2.10.6 Corollary. Every principal ideal domain is noetherian. O

2.10.7 Proposition. Every principal ideal domain is a unique factoriza-
tion domain.

Proof. Combining Proposition 2.9.6 and Proposition 2.9.8, it enough
to prove that every nonzero nonunit in a principal ideal domain is a
product of irreducibles.

Suppose that thering R is principal ideal domain and the nonzero
nonunit f € R is not a product of irreducibles. Since ring element
f is notirreducible, it follows that f = gh where neither g and h are
units. If both g and h were a product of irreducibles, then so would
f. Hence, at least one factor, say g, is not irreducible. We have
(f) c (g). Repeating this process, we produce an ascending chain
of ideals that is not eventually constant. However, Corollary 2.10.6
shows that R is noetherian which is a contradiction. O

2.10.8 Corollary (Fundamental theorem of arithmetic). Any nonzero
integer m can be written asm = up, p, --- p, whereu = +1, each p; is
primeinteger, and ¢ > 0. This expression is unique except for the ordering
of the primes. O

2.10.9 Theorem (Hilbert Basis). For any noetherian commutative ring
R, the polynomial ring R[x] is also noetherian.

Proof. LetJ be and ideal in R[x]. We claim that J is finitely gener-
ated. For all nonnegative integers n, let I,, denote the set of all lead-
ing coefficients of polynomials of degree n in J. Since addition and
multiplication by elements in R is defined coefficientwise in R, we
seethat], isanidealin R. We have I, C I, because f = ax"+--- €
I,, implies that xf = ax"*! + ... € I,,,;. Since R is noetherian, there
exists a nonnegative integer such thatI,,, = I,,,; = --- and, for all
0 <i<m,eachl, =(a;;,a;,,..,0q ) for some nonnegative integer
k;. Choose elements f;; € J such that the leading coefficient of
fij=a;jforall0<i<andl< j<k;. Weclaim that the ideal J is
generated these polynomials.

Suppose there is a polynomial g € J of minimal degree n such
thatg ¢ J' = (f;;10<i<mand1<j<k;). Set¢ := min(m,n).
The definition of the ideal I, implies that the leading coefficient of
ghastheformr a,;+r,a,,+---+r, a, i, forsomery, ry,...,r, €R.
Itfollows that h := g—x"~“(ry fo1+7; fo o+~ 47k, frx,) has degree
less that n. Our choose of g guarantees that h € J'. However, this
implies that g = h+ x"~“(ry fo1 + 72 fop + -+ + Tk, fox,) belongs to
J’, which contradicts our supposition. O

2.10.10 Corollary. For any nonnegative integer n and any noetherian
ring R, the polynomial ring R[x;, X5, ... , X, ] is also noetherian. O



2.11 Factoring polynomials

2.11.1 Definition. Let R be a unique factorization domain and let
f=a,x"+a,_1x" '+ - +a, x+a, € R[x]. The content of f is
defined to be cont(f) := ged(a,,;, ay_1, -, ap). The polynomial f is
primitive if cont(f) = 1.

2.11.2 Lemma (Gauss). Let R be a unique factorization domain. For any
two polynomials f, g € R[x], we have cont(fg) = cont(f) cont(g). In
particular, if f and g are primitive, then the product f g also is.

Proof. Write f = cont(f) f° and g = cont(g) g° where f°, g° are
primitive. Since we have f g = cont(f) cont(g) f° g°, it suffices to
verify that f° g° is primitive. Let f° = ay + a; x + -+ + a,, x™ and
g° = by + by x+--- b, x". Suppose that the coefficients of f° g° have
a common divisor d which is not a unit. If p is a prime divisor of d,
then p must divide all the coefficients of f°g°. Since f° and g° are
primitive, p does not divide all the coefficients of f° or g°. Let a,
be the first coefficient of f° not divisible by p and let b, be the first
coefficient of g° not divisible by p. Consider the coefficient of x"+$
in f° g°; it has the form

ar bs + (ar+1 bs—l + arp bs—z + ) + (ar—l bs+1 +a, bs+2 + - ) .

By hypothesis p divides this sum. Moreover, all the terms in the
first parenthesis are divisible by p (because p divides b; for all j < s)
and all terms in the second parenthesis are divisible by p (because
p divides a; for all i < r). It follows that p divides a, b,. As p is

prime, p divides either a, or b, contrary to our choice of a, and b.

This contradiction shows that no prime divides all the coefficients
of f°g° and hence f* g° is primitive. O

2.11.3 Lemma. Let R be a unique factorization domain and let K be its

field of fractions.

« For any nonzero polynomial f € K[x], we have f = c f° wherec € K
and f° is a primitive polynomial in R[x]. This factorization is unique
up to multiplication by a unit of R.

« Let f € R[x] be a polynomial having positive degree. If f is irreducible
in R[x], then f isirreducible in K[x].

Proof.

» Finding a common denominator d for the nonzero coefficients of
f, we obtain f = (1/d) f where f € R[x]. Setting c := cont(f)/d,
it follows that f = c f° where f° € R[x] is primitive. Suppose
that f = a/b g where a/b € K and g € R[x] is primitive. It follows
thatad g = b cont(f) f°. Taking the content of both sides yields
uad = b cont(f) for some unit u € R. We deduce thatug = f°.
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To define the content, we need to
know that greatest common divisors
exist. The greatest common divisor, if
it exists, is unique only up to multipli-
cation by a unit. Hence, the content of
a polynomial is an equivalence class.
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« Since cont(f) divides f, the polynomial f is primitive in R[x].
Suppose that f is reducible in K[x]. It follows that f = g, g,
where g; € K[x] and deg(g;) > 0 for all 1 < j < 2. The first part
implies g; = ¢; hj where ¢; € K and h; € R[x] is primitive. Hence,
f = c; ¢y hy h, and the product h, h, is primitive by Lemma 2.11.2.
The first part implies f and h; h, differ by multiplication by a unit
of R, which contradicts the irreducibility of f € R[x]. O

2.11.4 Theorem. For any unique factorization domain R, the polynomial
ring R[x] is also a unique factorization domain.

Proof. LetK be the field of fractions for R. Consider a nonzero poly-
nomial f € R[x]. Since K[x] is a unique factorization domain, we
can write f = p;p, --- p, where p; € K][x] is irreducible for all
1 < i < r. Lemma 2.11.3 implies that p; = ¢;q; where ¢; € K and
qj € R[x] is primitive. Hence, we see that ' = cq; q, --- q, where
c= HJ. ¢j € K. Write ¢ = a/b where a, b € R. Taking contents, we
obtain cont(b f) = cont(aq, q, --- q,) = a by Lemma 2.11.2. Thus,
we obtain b cont(f) = a so b divides a and cont(f) = ¢ € R. Since
each g; is irreducible in K[x], it is irreducible in R[x]. The ring
R is a unique factorization domain, so we have ¢ = ud;d, --- d;
where each d; is irreducible in R and u € R is a unit. It follows that
f=udd, ---dsq;q, -+ q, is a factorization of f into a product of
irreducible elements in R[x].

It remains to check uniqueness. Suppose that we have a second
factorization: f = u'd;d; --- diq1q; -+ q; where each qj € R[x] is
primitive and d; € R is irreducible. Since this is also a factorization
in K[x] and the factorization there is unique, it follows that r = k
and q} = q; (up to units and reordering). If primitive polynomials
differ by a unit in K[x], then they also differ by a unit in R[x]. Fur-
thermore, we have cont(f) = u'd;d} ---d; = ud;d, ---dgsos =t
and d; = d; (up to units and reordering). O

2.11.5 Corollary. For any nonnegative integer n and any unique factor-
ization domain R, the polynomial ring R[x1, X5, ..., X, ] iS also a unique
factorization domain. O



