2.12 **Basic Sieve Theory**

How do we determine if an given element is irreducible? The sieve of Eratosthenes is a method of determining the primes less than a given number n. List the integers from 2 to n. The smallest entry 2 is prime. Cross out the multiplies of 2 from our list. The smallest remaining entry 3 is prime because it is not divisible by any smaller prime. Cross out the multiplies of 3. Repeat.

Using this method, Table 2.3 list the prime integers less than 100.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	5 4	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	

For any prime integer p, this method also allows one to identify the irreducible polynomials in $\mathbb{F}_p[x]$. List all polynomials by degree and then cross out products. Table 2.4 lists the irreducible polynomials of degree at most 4 in $\mathbb{F}_2[x]$.

0	1	x	x+1
x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x^3	$x^3 + 1$	$x^3 + x$	$x^3 + x + 1$
$x^3 + x^2$	$x^3 + x^2 + 1$	$x^3 + x^2 + x$	$x^3 + x^2 + x + 1$
x^4	$x^4 + 1$	$x^4 + x$	$x^4 + x + 1$
$x^4 + x^2$	$x^4 + x^2 + 1$	$x^4 + x^2 + x$	$x^4 + x^2 + x + 1$
$x^4 + x^3$	$x^4 + x^3 + 1$	$x^4 + x^3 + x$	$x^4 + x^3 + x + 1$
$x^4 + x^3 + x^2$	$x^4 + x^3 + x^2 + 1$	$x^4 + x^3 + x^2 + x$	$x^4 + x^3 + x^2 + x + 1$

2.12.1 Remark. Since $x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$, the quotient $K := \mathbb{F}_2[x]/\langle x^2 + x + 1 \rangle$ is a field. If α denotes the image of x in K, then $\{1, \alpha\}$ forms a basis of K over \mathbb{F}_2 . Hence, the field K has four elements; namely $\{0, 1, \alpha, 1 + \alpha\}$.

2.12.2 Theorem. Let p be a prime integer. If N_d denotes the number of monic irreducible polynomials in $\mathbb{F}_p[x]$ having degree d, then we have

$$\sum_{d|n} d N_d = p^n.$$

Proof. Consider the formal power series $\sum_g t^{\deg(g)} \in \mathbb{Z}[[t]]$ where the summation is over all monic polynomials $g \in \mathbb{F}_p[x]$. The total

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-02

The Greek polymath, Eratosthenes of Cyrene (276BCE-194BCE), is famous for his work on prime numbers and for measuring the diameter of the

Table 2.3: The 25 primes less than 100

Table 2.4: Irreducible polynomials in $\mathbb{F}_2[x]$ having small degree

number of monic polynomials $g \in \mathbb{F}_p[x]$ of degree n is p^n , so we have

$$\sum_{g} t^{\deg(f)} = \sum_{n=0}^{\infty} p^n t^n = \frac{1}{1 - p t}.$$

The polynomial ring $\mathbb{F}_p[x]$ is a unique factorization domain. As a consequence, we obtain

$$\sum_{g} t^{\deg(g)} = \prod_{f} (1 - t^{\deg(f)})^{-1} = \prod_{d=1}^{\infty} (1 - t^d)^{-N_d}$$

where the middle product runs over the monic irreducible polynomials in $f \in \mathbb{F}_p[x]$. It follows that

$$\frac{1}{1-p\,t}=\prod_{d=1}^{\infty}(1-t^d)^{-N_d}\,,$$

Taking logarithms gives

$$\sum_{n=1}^{\infty} \frac{p^n t^n}{n} = -\log(1 - p t) = -\sum_{d=1}^{\infty} N_d \log(1 - t^d)$$

$$= \sum_{d=1}^{\infty} \sum_{e=1}^{\infty} d N_d \frac{t^{de}}{de} = \sum_{n=1}^{\infty} \frac{t^n}{n} \left(\sum_{de=n} d N_d \right). \quad \Box$$

2.12.3 Definition. For any positive integer n, the Möbius function $\mu(n)$ is defined to be the sum of the primitive *n*-th roots of unity. It has values in $\{-1, 0, 1\}$ depending on the prime factorization of n:

- $\mu(n) = 1$ if n is a square-free positive integer with an even number of prime factors.
- $\mu(n) = -1$ if *n* is a square-free positive integer with an odd number of prime factors.
- $\mu(n) = 0$ if *n* has a squared prime factor.

2.12.4 Corollary. Let p be a prime integer. If N_n denotes the number of monic irreducible polynomials in $\mathbb{F}_p[x]$ having degree n, then we have

$$N_n = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}.$$

Proof. Combine Theorem 2.12.2 and Möbius inversion formula.

2.12.5 Theorem. Let p be a prime integer and, for some positive integer d, set $q := p^d$. Every monic irreducible polynomial of degree d in $\mathbb{F}_p[x]$ is a factor of $x^q - x$. The irreducible factors of $x^q - x$ in $\mathbb{F}_p[x]$ are precisely the monic irreducible polynomials in $\mathbb{F}_p[x]$ whose degree divides d.

Sketch of Proof. Since $(d/dx)(x^q - x) = qx^{q-1} - 1 = -1$, this monic polynomial has no multiple roots. Hence, its splitting field has q elements.

The sum of the Möbius function over all positive divisors of n (including nitself and 1) is zero except when n = 1:

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

2.13 Irreducibility Criteria

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-03

Can we identify and irreducible polynomial without enumerating all irreducible polynomial of lower degree?

2.13.1 Problem. Is $f(x) = x^3 + 6x^2 + 7 \in \mathbb{Z}[x]$ irreducible?

Solution. Yes. Otherwise f would have linear factor and its root would divide 7. However, we have f(1) = 14, f(-1) = 12, f(7) > 0, and f(-7) = (-1)(49) + 7 < 0.

2.13.2 Proposition. Let $f = a_n x^n + \cdots + a_1 x + a_0 \in R[x]$ and let p be a prime element in R that does not divide a_n . If the image of the polynomial f in $R/\langle p \rangle[x]$ is irreducible, then f is irreducible in R[x].

Proof. The canonical ring homomorphism $R \rightarrow R/\langle p \rangle$ induces a ring map $\varphi: R[x] \to R/\langle p \rangle [x]$. If we have $f = gh \in R$, then we obtain $\varphi(f) = \varphi(g)\varphi(h)$. The assumption that p does not divide a_n implies that $\deg \varphi(g) = \deg(g)$ and $\deg \varphi(h) = \deg(h)$. Hence, reducibility of the polynomial f leads to the reducibility of $\varphi(f)$. \square

2.13.3 Problem. Is $x^4 + 15x^3 + 7 \in \mathbb{Q}[x]$ irreducible?

Solution. The image of this polynomial in $\mathbb{F}_5[x]$ is $x^4 + 2$. By evaluating $x^4 + 1$ at all five elements of \mathbb{F}_5 , we see that $x^4 + 1$ has no root in \mathbb{F}_5 . Suppose that $x^4 + 2 = (x^2 + ax + b)(x^2 + cx + d)$. It follows that a+c=0, ac+b+d=0, ad+bc=0, and bd=2. Since c=-a, we have 0 = ad + bc - a(d - b), so a = 0 or d = b.

- If a = 0, then we have c = 0. The equations b + d = 0 and bd = 2imply that d = -b, $-b^2 = 2$, and $b^2 = 3$. However, $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 4$, and $4^2 = 1$. Hence, there is no element $b \in \mathbb{F}_5$ such that $b^{2} = 3$.
- If b = d, then we have $b^2 = 2$. This is again impossible because the only perfect squares in \mathbb{F}_5 are 0, 1, and 4.

We see that the polynomial $x^4 + 2$ is irreducible in $\mathbb{F}_5[x]$. Thus, Proposition 2.13.2 shows that $x^4 + 15x^3 + 7$ is irreducible in $\mathbb{Z}[x]$ and Lemma 2.11.2 shows that it is irreducible in $\mathbb{Q}[x]$.

2.13.4 Theorem (Schönemann-Eisenstein Criterion). Let R a domain and let $f := a_0 + a_1 x + \cdots + a_n x^n \in R[x]$ be a primitive polynomial of positive degree n. When there exists a prime ideal P in R such that

- $a_n \notin P$,
- $a_0, a_1, ..., a_{n-1} \in P$, and
- $a_0 \notin P^2$,

the polynomial f is irreducible in R[x].

Proof. Suppose that f = gh for some $g, h \in R[x]$ having positive degree. Set $g := b_0 + b_1 x + \dots + b_r x^r$ and $h := c_0 + c_1 x + \dots + c_s x^s$ Theodor Schönemann first published a version of this criterion in 1846. Gotthold Eisenstein published a somewhat different version in the same journal in 1850.

where $\deg(g) = r$ and $\deg(h) = s$. It follows that $a_0 = b_0 c_0 \in P$. Since P is a prime ideal, we have $b_0 \in P$ or $c_0 \in P$. Having both b_0 and c_0 belong to P would imply that $a_0 \in P^2$ contradicting our hypotheses. Without loss of generality, we may assume that $b_0 \in P$ and $c_0 \notin P$. If every coefficient of g was in P, then every coefficient of f would also be in P again contradicting our hypothesis. Let b_i be the first coefficient of g such that $b_i \notin P$. Since

$$a_i = b_i c_0 + b_{i-1} c_1 + \dots + b_0 c_i$$

we obtain the equation $b_i c_0 = a_i - b_{i-1} c_1 - \cdots - b_0 c_i$. Every element on the right side of this equation lies in P. However, this implies that $b_i c_0 \in P$ which because P is prime yields either $b_i \in P$ or $c_0 \in P$ which is a contradiction.

The following special case

2.13.5 Corollary. Let R be a unique factorization domain with fraction field K and consider $f := a_0 + a_1 x + \cdots + a_n x^n \in R[x]$. When there exists a prime $p \in R$ such that

- p does not divide a_n ,
- p divides a_i for all $0 \le i \le n-1$, and
- p^2 does not divide a_0 , then the polynomial f is irreducible in K[x].

Proof. Theorem 2.13.4 shows that the polynomial f is irreducible in R[x] and Lemma 2.11.2 shows that f is irreducible in K[x].

2.13.6 Problem. Is $x^5 - 6x^4 + 3 \in \mathbb{Q}[x]$ irreducible?

Solution. Yes, apply Corollary 2.13.5 with p = 3.

2.13.7 Corollary. For any prime integer p, the polynomial

$$f := x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible in $\mathbb{Q}[x]$.

Proof. Since $(x-1) f(x) = x^p - 1$, the substitution $x \mapsto y + 1$ yields

$$yf(y+1) = (y+1)^p - 1 = y^p + {p \choose 1}y^{p-1} + {p \choose 2}y^{p-2} + \dots + {p \choose p-1}y.$$

We have $\binom{p}{i} = p(p-1)\cdots(p-i+1)/i!$. If i < p, the the prime p is not a factor of i!, so i! divides the product $(p-1)\cdots(p-i+1)$ which implies that $\binom{p}{i}$ is divisible by p. Dividing the expansion of y f(y+1) by y shows that f(y+1) statisfies the hypothesis of Corollary 2.13.5. Therefore, the polynomial $y^{p-1} + \binom{p}{1} y^{p-2} + \binom{p}{2} y^{p-3} + \cdots + \binom{p}{p-1}$ is irreducible and it follows that f also is.