2.12 Basic Sieve Theory

How do we determine if an given element is irreducible? The sieve
of Eratosthenes is a method of determining the primes less than a
given number n. List the integers from 2 to n. The smallest entry 2
is prime. Cross out the multiplies of 2 from our list. The smallest
remaining entry 3 is prime because it is not divisible by any smaller
prime. Cross out the multiplies of 3. Repeat.

Using this method, Table 2.3 list the prime integers less than 100.

2] [3] 4 [5] ¢ [7] 8 9 1o
11 12 13 34 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 7% 77 78 79 80
81 8 83 84 8 8 87 8 89 90
91 92 93 94 95 96 97 98 99

For any prime integer p, this method also allows one to identify
the irreducible polynomials in [,[x]. List all polynomials by degree
and then cross out products. Table 2.4 lists the irreducible polyno-
mials of degree at most 4 in F,[x].

o 1 b x+1
*2 *24+1 224 x’+x+1
*3 #3441 4% x3+x+1
2342 xX3+x2+1 X4x2+x 42 +x+1
x4 *441 x4+ x*+x+1
X442 44241 X2 4x2+x X2+ +1
x4 4x3 x*4+x341 x4 4% 23 +1
434 Sl a4 XX+ x2+x+1

2.12.1 Remark. Since x? + x + 1is irreducible in [,[x], the quotient
K = F,[x]/(x* + x 4+ 1) is a field. If & denotes the image of x in K,
then {1, a} forms a basis of K over [F,. Hence, the field K has four
elements; namely {0,1, o, 1 + a}.

2.12.2 Theorem. Letp be a prime integer. If N; denotes the number of
monic irreducible polynomials in [ ,[x] having degree d, then we have

Zde = pn.
din

Proof. Consider the formal power series Zg tdee® e 7[[t]] where
the summation is over all monic polynomials g € Fp[x]. The total
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The Greek polymath, Eratosthenes of
Cyrene (276BCE-194BCE), is famous
for his work on prime numbers and
for measuring the diameter of the
earth.

Table 2.3: The 25 primes less than 100

Table 2.4: Irreducible polynomials in
F,[x] having small degree
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The sum of the Mobius function over
all positive divisors of n (including n
itself and 1) is zero except when n = 1:

D u(d) =

din

1
0

ifn=1,
ifn>1.

number of monic polynomials g € [F,[x] of degree n is p", so we

have
™ 1
Z tdes(f) = Z prtt = .
. = 1—-pt

The polynomial ring Fp[x] is a unique factorization domain. As a
consequence, we obtain

Z tdes(®) — H(l _ tdeg(f))—l — H(l — t4)~Na
g f d=1

where the middle product runs over the monic irreducible polyno-
mials in f € F,[x]. It follows that

1 o0
=TI - )N,
1—-pt g

Taking logarithms gives

> — =—log(1-pt) = — > Ny log(1 —t4)
n=1

d=1
o0 o0 tde o0 t"
= dN; — = — dN . ]

2.12.3 Definition. For any positive integer n, the Mébius function

u(n) is defined to be the sum of the primitive n-th roots of unity.

It has values in {—1, 0, 1} depending on the prime factorization of n:

« u(n) = lifnisasquare-free positive integer with an even number
of prime factors.

« u(n) = —1if nis a square-free positive integer with an odd num-
ber of prime factors.

« u(n) = 0if n has a squared prime factor.

2.12.4 Corollary. Letp be a prime integer. If N,, denotes the number of
monic irreducible polynomials in [ x] having degree n, then we have

1
N, = —Zﬂ(d)l?n/d .
h din

Proof. Combine Theorem 2.12.2 and Mdbius inversion formula. O

2.12.5 Theorem. Letp be a prime integer and, for some positive integer
d, setq := p?. Every monic irreducible polynomial of degreed in Fplx]is
a factor of x4 — x. The irreducible factors of X1 — x in [ x] are precisely
the monic irreducible polynomials in [F [ x] whose degree divides d.

Sketch of Proof. Since (d/dx)(x? — x) = qx9~! — 1 = —1, this monic
polynomial has no multiple roots. Hence, its splitting field has q
elements. O



2.13 Irreducibility Criteria

Can we identify and irreducible polynomial without enumerating
all irreducible polynomial of lower degree?

2.13.1 Problem. Is f(x) = x* + 6x? + 7 € Z[x] irreducible?

Solution. Yes. Otherwise f would have linear factor and its root
would divide 7. However, we have f(1) = 14, f(-1) = 12, f(7) > 0,
and f(-=7) = (-1)(49) + 7 < 0. O

2.13.2 Proposition. Let f = a,x" +---+a,;x+a, € R[x] andletp bea
prime element in R that does not divide a,,. If the image of the polynomial
f inR/{(p)[x] is irreducible, then f is irreducible in R[x].

Proof. The canonical ring homomorphism R — R/(p) induces a
ring map ¢ : R[x] - R/{p)[x]. If we have f = gh € R, then we
obtain ¢(f) = ¢(g) ¢(h). The assumption that p does not divide
a, implies that deg ¢(g) = deg(g) and deg @(h) = deg(h). Hence,
reducibility of the polynomial f leads to the reducibility of o(f). O

2.13.3 Problem. Is x* 4+ 15x3 + 7 € Q[x] irreducible?

Solution. The image of this polynomial in Fs[x] is x* + 2. By evalu-
ating x* + 1 at all five elements of F5, we see that x* + 1 has no root
in Fs. Suppose that x* + 2 = (x2 + ax + b)(x? + ¢ x + d). It follows
thata+c=0,ac+b+d = 0,ad +bc = 0,and bd = 2. Sincec = —a,
we have 0 = ad + bc —a(d — b),soa=0ord = b.

« Ifa = 0, then we have ¢ = 0. The equations b +d = 0 and bd = 2
imply thatd = —b, —b? = 2, and b? = 3. However, 0> = 0,1%2 =1,
22 = 4,3% = 4,and 4* = 1. Hence, there is no element b € [F5 such
that b? = 3.

« If b = d, then we have b?> = 2. This is again impossible because
the only perfect squares in [F; are 0, 1, and 4.

We see that the polynomial x* + 2 is irreducible in Fs[x]. Thus,

Proposition 2.13.2 shows that x* + 15x3 + 7 is irreducible in Z[x]

and Lemma 2.11.2 shows that it is irreducible in Q[x]. O

2.13.4 Theorem (Schonemann-Eisenstein Criterion). LetR a domain
andlet f :=ay+a; x + --- + a,, x" € R[x] be a primitive polynomial of
positive degree n. When there exists a prime ideal P in R such that
ca,gP,

s Qgy,0a4,...,a,_1 € P, and

. ay & P?,

the polynomial f is irreducible in R[x].

Proof. Suppose that f = gh for some g,h € R[x] having positive
degree. Setg:=by+b; x+ -+ b, x"andh:=cy+c;x+ - + ¢ x5
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Theodor Schénemann first published
a version of this criterion in 1846.
Gotthold Eisenstein published a
somewhat different version in the
same journal in 1850.
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where deg(g) = r and deg(h) = s. It follows that a, = byc, € P.
Since P is a prime ideal, we have b, € P or ¢, € P. Having both
b, and ¢, belong to P would imply that a, € P? contradicting our
hypotheses. Without loss of generality, we may assume that b, € P
and ¢, ¢ P. If every coefficient of g was in P, then every coefficient
of f would also be in P again contradicting our hypothesis. Let b;
be the first coefficient of g such that b; ¢ P. Since

ai =biCO+bi_lcl+"'+boci,

we obtain the equation b; ¢, = a;—b;_; ¢; —--- — by ¢;. Every element
on therightside of this equation lies in P. However, this implies that
b;c, € P which because P is prime yields either b; € P or ¢, € P
which is a contradiction. O

The following special case

2.13.5 Corollary. Let R be a unique factorization domain with fraction
field K and consider f := ay + a; x + --- + a, x" € R[x]. When there
exists a prime p € R such that

« p does not divide a,,

« pdividesa; forall0 <i<n-—1, and

« p? does not divide a,,

then the polynomial f is irreducible in K[x].

Proof. Theorem 2.13.4 shows that the polynomial f is irreducible in
R[x] and Lemma 2.11.2 shows that f is irreducible in K[x]. O

2.13.6 Problem. Is x°> — 6 x* + 3 € Q[x] irreducible?
Solution. Yes, apply Corollary 2.13.5 with p = 3. O

2.13.7 Corollary. For any prime integer p, the polynomial
fi=xP b4 xP 24+ 4+ x+1
is irreducible in Q[ x].

Proof. Since (x —1) f(x) = xP — 1, the substitution x — y + 1 yields

Y@+D =@+ —1=yP+(5) P+ (5)yP 2+ + (7)) Y.

We have (}) = p(p — 1) - (p — i + 1)/i!. If i < p, the the prime p is
not a factor of i!, so i! divides the product (p —1) --- (p — i + 1) which
implies that (¥ ) is divisible by p. Dividing the expansion of y f(y+1)
by y shows that f(y + 1) statisfies the hypothesis of Corollary 2.13.5.
Therefore, the polynomial P! + (§) yP=2 + (5) P2 + - + (,F,) is
irreducible and it follows that f also is. O



