3
Module Theory

A module is an algebraic structure on a pair of underlying sets with
four binary operations. Although modules can be defined over an
arbitrary ring, we will focus on modules over a commutative ring.

3.0 Modules

3.0.1 Definition. Let R be a commutative ring. An R-module is an
additive abelian group V' with a scalar multiplication R X V — V
such that, for allr,s € R and all u, v € V, we have

r(u+v)=ru+rv (rs)v=r(sv)

(r+s)v=rv+sv 1v="v.

3.0.2 Example. For any field K, K-vector spaces and K-modules are
equivalent notions. <>

3.0.3 Example. Every abelian group is a Z-module in a unique way.

For any positive integer n and any element g in an abelian group G,
we have 0,8 = 05, (—n)g = —(ng), and

ng=g+g+-+g. 3
- 2
n summands

3.0.4 Example. Every ring R is a module over itself. <>

3.0.5 Example. The set R" of n-tuples of elements from R form an
R-module under componentwise operations. <>

3.0.6 Example. Everyidealin R is an R-module. <>

3.0.7 Example. A ring homomorphism ¢ : R — R’ makes R’ into an
R-module. Forany r € Rand any v € R’, we have rv:= p(r)v. <

3.0.8 Definition. Let VV and W be R-modules. Amap ¢ : V — Wis
an R-module homomorphism or R-linear such that, for allr € R and
allu,v € V, we have o(ru + v) = r p(u) + @(v).
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The composition of two R-module
homomorphisms is an R-module
homomorphism. The identity map
on any R-module is an R-module
homomorphism.
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Figure 3.1: Commutative diagrams
arising from Example 3.0.12

Multiplication by a fixed ring element
f € R, also called homothety by f,
gives an R-module endomorphism
defined, forallv e V,by v~ fu.

3.0.9 Example. For any field K, a K-module homomorphism is a
linear transformation of vector spaces. <>

3.0.10 Example. Every group homomorphism of abelian groups is
a Z-module homomorphism. <&

3.0.11 Example. Let IV and W be R-modules. The set of R-module
homomorphisms from V' to W forms an R-module Homg(V, W).
For all ¢, € Homg(V,W), allr € R, and all v € I, we have

(@ +¥)(V) = ¢(v) + P(v), (re)(v) =rov).

An R-module homomorphism ¢ : R — V is uniquely determined
by the image ¢(1z) which can be any element of V. Hence, for any
R-module V, there is a canonical isomorphism Homgz(R,V) =~ V
defined by ¢ — ¢@(1g). <

3.0.12 Example. Given R-module homomorphisms ¢: V' — IV’ and
P : W - W', there are two induced R-module homomorphisms

Hom(p, W) : Homg(V', W) - Homg(V, W)
Hom(V, ) : Homgz(V,W) - Homgx(V,W'),

defined, for all & € Homgz(V’',W) and all 8 € Homgz(V, W), by
(Hom(gp, W))(6) := 6 o p and (Hom(V,9))(8) := 1o 6. >

3.0.13 Example. For any R-module V/, the composition of R-module
homomorphisms defines a noncommutative ring structure on the
R-module Homg(V, V). The multiplicative unit is the identity map
idy, : V' > V. An R-module homomorphism from V' to itself is also
called an endomorphism of V' and Endz (V) := Homgz(V, V). <&

3.0.14 Proposition. An R-module homomorphism is an isomorphism if
and only if the underlying map of sets is bijective.

Proof.

(=) Suppose that the R-module homomorphism ¢ : V' — W is an
isomorphism. Since the underlying map of sets has an inverse, it
is a bijection.

(&) Suppose that underlying map ¢ is bijective. There exists a map
P: W — Vsuch that ¢ o9 = idy and 3 o ¢ = idy,. It remains to
show that this set map is an R-module homomorphism. Since ¢
is an R-module homomorphism, it follows that, for all r € R and
all v, w € W, we have

P(rp) + Pp(w)) = r p(P()) + p(P(W)) = rv + w

sor(v) +yP(w) € V is the unique element that ¢ sends to r v+ w.
By definition, this implies Y(r v + w) = rP(v) + P(w). O



3.1 Isomorphism Theorems

For a third time, we have theorems describing the relations between
quotients, homomorphisms, and subobjects.

3.1.1 Definition. A submodule of an R-module V' is a nonempty sub-
set U that is closed under addition and scalar multiplication. In
other words, a nonempty set U is a submodule of V' if and only if,
forallr e Randallu,v € U,we haveru+v e U.

3.1.2 Example. In any R-module V/, the set {0} is a submodule. By
an abuse of notation, the zero submodule is denoted O. &

3.1.3 Example. Submodules of the R-module R! are ideals. <&

3.1.4 Example. For any R-module homomorphism ¢ : V' — W, the
kernelis defined tobe Ker(¢) := {v € V' | p(v) = 0}. Forallr € R and
all u, v € Ker(g), we have p(ru + v) = re(u) + p(v) =r0+ 0 =0,
so the kernel of ¢ is a submodule. <&

3.1.5 Example. For any R-module homomorphism ¢ : V' —» W, the
image is defined to be

Im(p) := {w € W | there exists v € V such that ¢(v) = w}.

For all v, w € Im(gp), there exists v, w’ € V such that ¢(v') = vand
p(w') = w. Since p(rv’ + w') = re(’) + p(w’) = rv + w for all
r € R, the image of ¢ is a submodule. <&

3.1.6 Definition. Let IV be an R-module and let U be a submodule
of V. The quotient group V'/U inherits an R-module structure from
V defined, forallr € Randallv € V,byr(v+ U) := rv + U.
This operation is well-defined because v + U = u + U implies that
v—ueUandrv—ru=r(v—u) € Uestablishingrv+U =ru+U.
The module /U is the quotient module. This operation also makes
the canonical map 77 : V' — V/U into an R-module homomorphism.

3.1.7 Example. For anyideal I, the quotient R/I is an R-module. <

3.1.8 Example. For any R-module homomorphism, the cokernel is
defined to be Coker(p) := W/Im(p). <&

3.1.9 Proposition. Let ¢ : V' — W be an R-module homomorphism.
For any submodules V' C V and W' C W satisfying (V') C W', the
induced map @ : V/V' — W/W' defined by p(v + V') := (v) + W' is
an R-module homomorphism.

Proof. By Corollary 1.7.14, it suffices to verify that ¢ is compatible
with scalar multiplication. For all r € R and all v € V, we have

p(rv+ V) =p(rv+ V') =@(rv)+ W’
=rpW)+ W =r(p)+W)=rp(v+W’). O
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Compare with Theorem 1.8.7 and
Theorem 3.1.13.

Compare with Lemma 1.2.7 and
Lemma 3.1.14.

3.1.10 Theorem (First Isomorphism). Letg : V — W be an R-module
homomorphism with K := Ker(¢). The induced map ¢ : V/K — Im(gp)
defined, for allv € V, by (v + K) = @(v) is an isomorphism.

Proof. By Theorem 1.8.1, it suffices to verify that ¢ is compatible
with scalar multiplication. For all » € R and all v € V', we have

Prw+K))=¢prv)+K =rp()+K
=r(p(v) +K)=rp({ +K). O

3.1.11 Theorem (Second Isomorphism). For two submodules U and
W, there exists an R-module isomorphism (U + W)/W =~ U/(U nW).

Sketch of Proof. It suffices to verify that the group isomorphism in
Theorem 1.8.5 is compatible with scalar multiplication. O

3.1.12 Theorem (Third Isomorphism). LetV be an R-module. For any
two submodules U and W of V satisfying U C W, there is an R-module
isomorphism V /W =~ (V/U)/(W/U).

Sketch of Proof. It suffices to verify that the group isomorphism in
Theorem 1.8.6 is compatible with scalar multiplication. O

3.1.13 Theorem (Correspondence). Let U be a submodule of the an
R-module V. The canonical R-module homomorphismz:V — V/U
induces a bijection between the set of all submodules of V' containing U
and the set of all submodules of V' /U. O

3.1.14 Lemma. Foranyfamily{U; | j € J} of submodulesin an R-module
V, the intersection U := ﬂjGJ Uj is also a submodule of V. O
3.1.15 Definition. For any subset U of an R-module V, the submod-
ule of V' generated by U, denoted by (U), is the intersection of all
submodules of V' that contain U. A module V is finitely generated if
V' = (U) for some finite subset U C V. Moreover, the module V is

cyclicif V' = (U) for some subset U having cardinality 1.

3.1.16 Example. For any ring R and any ideal I in R, the R-modules
R' and R/I are cyclic, generated by their respective multiplicative
identity elements. <>

3.1.17 Definition. The annihilator of an R-module V is
Ann(V):={feR| fv=0forallveV}.

Since(rf+g)v=r(fv)+(gv) =r0+0=0forallr € R and all
f>g € Ann(V), the annihilator of V' is an ideal in R.

3.1.18 Proposition. Forany cyclicR-moduleV, we haveV =~ R/ Ann(V).

Sketch of Proof. There exists v € V such that V' = (v). The map
®: R — V, defined by ¢(r) := rv, is a surjective R-module homo-
morphism with Ker(p) = Ann(V). O



