Module Theory

A module is an algebraic structure on a pair of underlying sets with four binary operations. Although modules can be defined over an arbitrary ring, we will focus on modules over a commutative ring.

3.0 Modules

3.0.1 Definition. Let R be a commutative ring. An R-module is an additive abelian group V with a scalar multiplication $R \times V \to V$ such that, for all $r, s \in R$ and all $u, v \in V$, we have

$$r(u+v) = ru + rv$$
 $(rs)v = r(sv)$
 $(r+s)v = rv + sv$ $1_R v = v$.

3.0.2 Example. For any field K, K-vector spaces and K-modules are equivalent notions. \diamondsuit

3.0.3 Example. Every abelian group is a \mathbb{Z} -module in a unique way. For any positive integer n and any element g in an abelian group G, we have $0_{\mathbb{Z}}g = 0_G$, (-n)g = -(ng), and

$$ng = \underbrace{g + g + \dots + g}_{n \text{ summands}}.$$

\$

3.0.4 Example. Every ring *R* is a module over itself.

3.0.5 Example. The set R^n of n-tuples of elements from R form an R-module under componentwise operations. \diamond

3.0.6 Example. Every ideal in R is an R-module.

3.0.7 Example. A ring homomorphism $\varphi : R \to R'$ makes R' into an R-module. For any $r \in R$ and any $v \in R'$, we have $r v := \varphi(r) v$. \diamond

3.0.8 Definition. Let V and W be R-modules. A map $\varphi: V \to W$ is an R-module homomorphism or R-linear such that, for all $r \in R$ and all $u, v \in V$, we have $\varphi(ru + v) = r \varphi(u) + \varphi(v)$.

The composition of two *R*-module homomorphisms is an *R*-module homomorphism. The identity map on any *R*-module is an *R*-module homomorphism.

3.0.9 Example. For any field K, a K-module homomorphism is a linear transformation of vector spaces.

3.0.10 Example. Every group homomorphism of abelian groups is a \mathbb{Z} -module homomorphism.

3.0.11 Example. Let V and W be R-modules. The set of R-module homomorphisms from V to W forms an R-module $Hom_R(V, W)$. For all $\varphi, \psi \in \operatorname{Hom}_R(V, W)$, all $r \in R$, and all $v \in V$, we have

$$(\varphi + \psi)(v) = \varphi(v) + \psi(v), \qquad (r\varphi)(v) = r\varphi(v).$$

An *R*-module homomorphism $\varphi: R \to V$ is uniquely determined by the image $\varphi(1_R)$ which can be any element of V. Hence, for any *R*-module *V*, there is a canonical isomorphism $\operatorname{Hom}_R(R,V) \cong V$ defined by $\varphi \mapsto \varphi(1_R)$. \Diamond

3.0.12 Example. Given *R*-module homomorphisms $\varphi: V \to V'$ and $\psi: W \to W'$, there are two induced R-module homomorphisms

$$\operatorname{Hom}(\varphi, W) : \operatorname{Hom}_R(V', W) \to \operatorname{Hom}_R(V, W)$$

 $\operatorname{Hom}(V, \psi) : \operatorname{Hom}_R(V, W) \to \operatorname{Hom}_R(V, W'),$

defined, for all $\theta \in \operatorname{Hom}_{\mathbb{R}}(V',W)$ and all $\theta \in \operatorname{Hom}_{\mathbb{R}}(V,W)$, by $(\operatorname{Hom}(\varphi, W))(\theta) := \theta \circ \varphi \text{ and } (\operatorname{Hom}(V, \psi))(\theta) := \psi \circ \theta.$

3.0.14 Proposition. *An R-module homomorphism is an isomorphism if* and only if the underlying map of sets is bijective.

Proof.

- (\Rightarrow) Suppose that the *R*-module homomorphism $\varphi: V \to W$ is an isomorphism. Since the underlying map of sets has an inverse, it is a bijection.
- (\Leftarrow) Suppose that underlying map φ is bijective. There exists a map $\psi: W \to V$ such that $\varphi \circ \psi = \mathrm{id}_W$ and $\psi \circ \varphi = \mathrm{id}_V$. It remains to show that this set map is an *R*-module homomorphism. Since φ is an *R*-module homomorphism, it follows that, for all $r \in R$ and all $v, w \in W$, we have

$$\varphi(r\psi(v) + \psi(w)) = r\varphi(\psi(v)) + \varphi(\psi(w)) = rv + w$$

so $r \psi(v) + \psi(w) \in V$ is the unique element that φ sends to r v + w. By definition, this implies $\psi(rv + w) = r\psi(v) + \psi(w)$.

Figure 3.1: Commutative diagrams arising from Example 3.0.12

Multiplication by a fixed ring element $f \in R$, also called homothety by f, gives an R-module endomorphism defined, for all $v \in V$, by $v \mapsto f v$.

3.1 **Isomorphism Theorems**

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-04

For a third time, we have theorems describing the relations between quotients, homomorphisms, and subobjects.

- 3.1.1 **Definition**. A *submodule* of an *R*-module *V* is a nonempty subset U that is closed under addition and scalar multiplication. In other words, a nonempty set U is a submodule of V if and only if, for all $r \in R$ and all $u, v \in U$, we have $ru + v \in U$.
- **3.1.2 Example.** In any *R*-module V, the set $\{0\}$ is a submodule. By an abuse of notation, the zero submodule is denoted 0.
- **3.1.3** Example. Submodules of the R-module R^1 are ideals. \Diamond
- 3.1.4 Example. For any R-module homomorphism $\varphi: V \to W$, the *kernel* is defined to be $Ker(\varphi) := \{v \in V \mid \varphi(v) = 0\}$. For all $r \in R$ and all $u, v \in \text{Ker}(\varphi)$, we have $\varphi(ru + v) = r\varphi(u) + \varphi(v) = r0 + 0 = 0$, so the *kernel* of φ is a submodule.
- **3.1.5 Example.** For any *R*-module homomorphism $\varphi: V \to W$, the image is defined to be

 $\operatorname{Im}(\varphi) := \{ w \in W \mid \text{ there exists } v \in V \text{ such that } \varphi(v) = w \}.$

For all $v, w \in \text{Im}(\varphi)$, there exists $v', w' \in V$ such that $\varphi(v') = v$ and $\varphi(w') = w$. Since $\varphi(rv' + w') = r\varphi(v') + \varphi(w') = rv + w$ for all $r \in R$, the image of φ is a submodule.

- **3.1.6 Definition.** Let *V* be an *R*-module and let *U* be a submodule of V. The quotient group V/U inherits an R-module structure from V defined, for all $r \in R$ and all $v \in V$, by r(v + U) := rv + U. This operation is well-defined because v + U = u + U implies that $v-u \in U$ and $rv-ru = r(v-u) \in U$ establishing rv+U = ru+U. The module V/U is the *quotient module*. This operation also makes the canonical map $\pi: V \to V/U$ into an *R*-module homomorphism.
- **3.1.7 Example.** For any ideal *I*, the quotient R/I is an *R*-module. \diamond
- 3.1.8 Example. For any *R*-module homomorphism, the *cokernel* is defined to be $\operatorname{Coker}(\varphi) := W/\operatorname{Im}(\varphi)$.
- 3.1.9 Proposition. Let $\varphi: V \to W$ be an R-module homomorphism. For any submodules $V' \subseteq V$ and $W' \subseteq W$ satisfying $\varphi(V') \subseteq W'$, the induced map $\overline{\varphi}: V/V' \to W/W'$ defined by $\overline{\varphi}(v+V') := \varphi(v) + W'$ is an R-module homomorphism.

Proof. By Corollary 1.7.14, it suffices to verify that $\overline{\varphi}$ is compatible with scalar multiplication. For all $r \in R$ and all $v \in V$, we have

$$\overline{\varphi}(r(v+V')) = \overline{\varphi}(rv+V') = \varphi(rv) + W'$$

$$= r\varphi(v) + W' = r(\varphi(v) + W') = r\overline{\varphi}(v+W'). \quad \Box$$

3.1.10 Theorem (First Isomorphism). Let $\varphi: V \to W$ be an R-module homomorphism with $K := \operatorname{Ker}(\varphi)$. The induced map $\widetilde{\varphi}: V/K \to \operatorname{Im}(\varphi)$ defined, for all $v \in V$, by $\widetilde{\varphi}(v + K) = \varphi(v)$ is an isomorphism.

Proof. By Theorem 1.8.1, it suffices to verify that $\widetilde{\varphi}$ is compatible with scalar multiplication. For all $r \in R$ and all $v \in V$, we have

$$\widetilde{\varphi}(r(v+K)) = \varphi(rv) + K = r\varphi(v) + K$$

$$= r(\varphi(v) + K) = r\widetilde{\varphi}(v+K).$$

3.1.11 Theorem (Second Isomorphism). For two submodules U and W, there exists an R-module isomorphism $(U + W)/W \cong U/(U \cap W)$.

Sketch of Proof. It suffices to verify that the group isomorphism in Theorem 1.8.5 is compatible with scalar multiplication. \Box

3.1.12 Theorem (Third Isomorphism). Let V be an R-module. For any two submodules U and W of V satisfying $U \subseteq W$, there is an R-module isomorphism $V/W \cong (V/U)/(W/U)$.

Sketch of Proof. It suffices to verify that the group isomorphism in Theorem 1.8.6 is compatible with scalar multiplication. \Box

3.1.13 Theorem (Correspondence). Let U be a submodule of the an R-module V. The canonical R-module homomorphism $\pi: V \to V/U$ induces a bijection between the set of all submodules of V containing U and the set of all submodules of V/U.

3.1.14 Lemma. For any family $\{U_j \mid j \in J\}$ of submodules in an R-module V, the intersection $U := \bigcap_{i \in J} U_i$ is also a submodule of V.

3.1.15 Definition. For any subset U of an R-module V, the *submodule of* V *generated by* U, denoted by $\langle U \rangle$, is the intersection of all submodules of V that contain U. A module V is *finitely generated* if $V = \langle U \rangle$ for some finite subset $U \subseteq V$. Moreover, the module V is *cyclic* if $V = \langle U \rangle$ for some subset U having cardinality 1.

3.1.16 Example. For any ring R and any ideal I in R, the R-modules R^1 and R/I are cyclic, generated by their respective multiplicative identity elements. \diamondsuit

3.1.17 Definition. The *annihilator* of an *R*-module *V* is

$$Ann(V) := \{ f \in R \mid f \ v = 0 \text{ for all } v \in V \}.$$

Since (rf + g)v = r(fv) + (gv) = r0 + 0 = 0 for all $r \in R$ and all $f, g \in \text{Ann}(V)$, the annihilator of V is an ideal in R.

3.1.18 Proposition. For any cyclic R-module V, we have $V \cong R/\operatorname{Ann}(V)$.

Sketch of Proof. There exists $v \in V$ such that $V = \langle v \rangle$. The map $\varphi : R \to V$, defined by $\varphi(r) := rv$, is a surjective R-module homomorphism with $Ker(\varphi) = Ann(V)$.

Compare with Theorem 1.8.7 and Theorem 3.1.13.

Compare with Lemma 1.2.7 and Lemma 3.1.14.