3.2 Products and Direct Sums

The product of a family of module is the “most general” module
which admits a homomorphism to each of member in the family.
Reversing the maps, the direct sum of a family of modules is the
“least specific” module to which each member in the family admits a
homomorphism. Despite this seemingly innocuous change, direct
sums are quite different from products.

3.2.1 Definition. LetJ be an arbitrary index set and consider {V}};;
a family of R-modules. The product V := Hje] V; is the Cartesian
product of sets with the R-module structure defined component-
wise: for all ¥ € Rand all u := (u;) € V,v := (v;) € V, we have
ru+v = (ru; +v;). This structure are equivalent to saying that the
projection maps w; : V' — V; are R-module homomorphisms.

3.2.2 Proposition (Mapping property of products). LetV =[] er Vi
be the product of a family of R-modules {V}}c;. For any R-module W
and any family of R-module homomorphisms ¢;: W — V; forall j € J,
there exists a unique R-module homomorphism ¢ : W — V such that
wWjop = g@;foraljel.

Proof. This follows directly from the definitions. O

3.2.3 Remark. Rephrasing Proposition 3.2.2, it follows that, for any
R-module W and any family of R-modules {V}};c;, the mapping

HomR(W, 11 VJ) - [[Homz(W,V))
jeJ jeJ
which associates ¢ € Homg(W, I, V;) to the family (w0 @) is an
R-module isomorphism.

3.2.4 Remark. The productis commutative and associative. For any
three R-modules U, V, and W, we have the canonical isomorphisms
UxVeVxUand(UxV)xW xUx(VxW).

3.2.5 Definition. LetJ be an arbitrary index set and consider {V}};
a family of R-modules. The direct sum @j <; Vj is the submodule of
the product V' := [, V; consisting of allv € V' such that @;(v) = 0
for all but a finite number of indices j.

For all k € J, let y : Vi, —» V be the map that associates to each
Uy € Vi the element in V such that @;(y(vx)) = U ;. Clearly, yy
is an injective R-module homomorphism from V) into the e V.
Forallv e @J.GJ V;, we have v = Zjej(yj o @;)(v).

3.2.6 Proposition (Mapping property of direct sums). Let{V};c; be
a family of R-modules. For any R-module W and any family of R-module
homomorphisms;: V; — W forall j € J, there is a unique R-module

homomorphism : @j.ej Vi — W suchthatypoy; = 9; forall j€J.
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When J = @, we have HjeJVj =0.
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Figure 3.2: Commutative diagrams
arising from Proposition 3.2.2

WhenJ = @, we have B, Vj = 0.
When the index set J is finite, we have
@jeJ Vi= Hje] Vj.

DVj
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Figure 3.3: Commutative diagrams
arising from Proposition 3.2.6
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Proof. Suppose that ¥ exists. For allv € jer V;, we have

P(v) = 2(1/’ oyje Wj)(v) = Z(ltbj ° wj)(v) >
jel jeJ
whence the uniqueness of 1. Setting Y(v) := Zjej(¢j o 77;)(v), one
immediately verifies that an R-module homomorphism has been
defined satisfying the conditions in the statement. O

3.2.7 Remark. Rephrasing Proposition 3.2.6, it follows that, for any
R-module W and any family of R-modules {V}}c;, the mapping

Homg(ED Vj, W) - [ Homg(V;, W)
jeJ jeJ

which associates ¢ € Homg(W, De;s V;) to the family (¢ o ;) is an
R-module isomorphism.

3.2.8 Remark. The direct sum is commutative and associative. For
any three R-modules U, V, and W, we have the canonical isomor-
phisms UV V@Uand(UdV)dWxUod (Ve W).

3.2.9 Definition. An R-module W is a direct sum of a family {V}};;
of submodules of W if the canonical map @je ; Vj— W isanisomor-
phism. This is equivalent to saying that every w € W can be written

uniquely in the form w = Zje] v where v; € V; forall j € J.

3.2.10 Definition. The submodule of W generated by the union of
a family {V}};c; of submodules is called the sum of the family and
denoted by Z}.GJ Vy. Ify;j: V4 — W is the canonical injection and
y: @J.EJ V; — W is defined by y(v;) = Z}.GJ 7;(v;), then ZjeJ V;is
the image of y.

3.2.11 Proposition (Characterization of direct sums). For any family

{Valaca of submodules in an R-module W, the following properties are

equivalent:

(a) The submodule ZJ.GJ V; is the direct sum of the family {V} ;.

(b) The relation Zj = 0 wherev; € V; implies that v; = 0 for all
JjelJ.

(c) Forallk € J, the intersection of V} and Z#k V;isO.

e Vi

Proof.

(a)  (b): Since Z}.GJ v; = Zje] u; if and only if Zjej(vj - u;) =0,
we see that (a) and (b) are equivalent.

(a) = (c): The uniqueness of the expression for an element in the
sum Y, ier Vi implies that the intersections are 0.

(c)= (b): The relation ZJ.EJ v; = 0 can be written as vy = ),
and (c) implies that v, = 0.

jrk T Uj



3.3 Complementary Submodules

3.3.1 Definition. Let¢: U —» V and ¢ : V — W be two R-module
homomorphisms. The pair (¢, ¥) or diagram

U—2,v . w

is an exact sequence if Ker(y)) = Im(¢p). Consider the diagram

UL,y w %, x.

This diagram is exact at V' if the pair (¢, ) is exact. It is exact at W
if the pair (3, 0) is exact. If the diagram is exact at each module, it
is an exact sequence. Exact sequences with an arbitrary number of
terms are defined similarly.

3.3.2 Remarks.

« The sequence 0 — U5V is exact if and only if ¢ be injective.

« The sequence U2V —s 0is exact if and only if ¢ be surjective.

« Let U be asubmodule of an R-module V. The canonical inclusion
t: U - V and the canonical surjection 7: V' — V/U form the
exact sequence 0 Uu—vVv -2 Vv/u 0.

+ An R-module homomorphism ¢ : U — V" has an exact sequence

0 —— Ker(p) v 2w Coker(p) —— 0.

3.3.3 Proposition. For any two submodules U and W of an R-module
V', there exists two exact sequences

nu
0—>U0WM>UEBWM>U+W—>O
vl vy v v
w ay —aw
0 Unw TOw T+ W 0

where the component maps Ny : UnNnW - U, np:UnW —- W,
Su:U->U+W,¢y W - U + W are the canonical injections, the
mapsPBy : V/(UNW) - V/U and By, : V/(UNW) - V /W areinduced
by the identity map on V', and the components oy : V/U - V/(U + W),
oy VIW = V /(U + W) are the canonical surjections.

Proof. From the definition of U + W, we see that the map [ ¢v —¢w |
is surjective. Since the maps 7);; and 7y, are injective, the map [,’,’;ﬁ |
is also injective. To say that [ ¢y —¢w (U, w) = 0 for some u € U
and some w € W means that {;(u) — {(w) = 0. Thus, there
exists v € U N W such that v = {y(u) = ¢y (w), so u = ny(v) and
w = Ny (v). We conclude that Ker([¢v ~¢w 1) = Im([;Y ]), so the
first sequence is exact.

Since the maps a;; and ay, are surjective, the map [av —aw | is
also surjective. If [g;’ ](v) = 0 for some v € V/(U n W), then we
have 8y (v) = By (v) = 0 which implies that v is the class of an
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For the pair (¢, %) to form an exact
sequence, one must have pop = 0
because this property yields the
inclusion Im(¢p) C Ker(®).

Multiplication by 2 yields the exact
sequence

072257 —7/2)— 0

of Z-modules.
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The characterization of direct sums of
submodules implies that U and W are
complementary submodules of V' if

andonlyif U+ W =V and UnW = 0.

Any two complements of a submodule
are isomorphic.

(b) = (c) is similar to (a) = (c).

(b) = (a) is similar to (a) = (b).

(c) = (b) is similar to (c) = (a).

element in U n W. Finally, to say that [ av —aw J(u, w) = O for some
u € V/U and some w € V/W means that ay;(u) = ay(w). Thus,
there exists u’,w’ € V whose classes modulo U and W are u, w
respectively and u’' — w’ € U + W. It follows that there are u” €
U and w” € W such that u’ — w’ = u” — w”, so there also exists
V' € Vsuchthatu' —u” = w’ — w” = v'. Let v be the class of v’
modulo U n W. Since By(v) = u and By,(v) = w, we conclude that
Ker([av —aw ]) = Im([ gp‘; ]), so the second sequence is exact. O

3.3.4 Definition. In an R-module V, two submodules U and W are
complementaryif V =U @ W.

3.3.5 Example. All submodules of the Z-module Z' have the form
(m) for some nonnegative integer M, but (m) n (n) = (lem(m, n)).
Thus, Z, 0 are the only pair of complementary submodulesin Z. <

3.3.6 Proposition. WhenV = U @ W, therestriction|y : U - V/W
of the canonical map 7t : V — V' /W is an isomorphism.

Proof. The map 7|y is surjective because U + W = V. Itis injective
because its kernelis Un W = 0. O

3.3.7 Proposition. Given an exact sequence of R-modules

® P

0 U

the following are equivalent:

(a) There exists an R-linear map 6 : V' — U such that8 o ¢ = idy.
(b) There exists an R-linear map o : W — V such thaty o o = idy,.
(c) There exists an isomorphismV = U @ W.

The homomorphisms 6 and o are said to split the exact sequence.

V

w 0,

Sketch of Proof.
(a)=>(c): For any v € V, we have

8(v — (9 °6)(1)) = 6(v) — (8 = )(6(v)) = 0,

so v—(go0)(v) € Ker(0) and V = Ker(0)+Im(gp). Consideru € U
such that p(u) € Ker(6) n Im(¢). It follows that 0 = 8(p(u)) = u,
so p(u) = @(0) = 0. We conclude that V' =~ Im(¢p) @ Ker(6).

(a)=>(b): For any w € W, there exists v € V such that (v) = w
because Y is surjective. Defineg : W — V by o(w) := v—(g<0)(v).
If p(v) = u = P(v'), then we have v — v’ € Ker(¢p) = Im(¢p), so

U= (¢o0)(V) = (V' = (poO)(V)) = (v-V)—(poO)(v-1)

belongs to Im(¢) N Ker(8) = 0 and the map o is well-defined. By
construction, we have 1 o 0 = idy,.

(c)=(a): WhenV =~ U®W, the mapping property of product shows
that the canonical surjection @ : V' — U satisfies wogp = idy. O



