3.4 Free Modules

In analogy with free groups, we identify those modules having only the relations required by the module axioms.

3.4.1 Definition. Let R be a commutative ring. For any index set J, consider the *R*-module $R^{(J)} := \bigoplus_{i \in I} R^1$. For each $j \in J$ and each canonical map $\gamma_i: R^1 \to R^{(J)}$, set $e_i := \gamma_i(1_R)$. With this notation, every $r:=(r_j)\in R^{(J)}$ may be written uniquely as $r=\sum_{j\in J}r_j\,e_j$. Let $\varepsilon: J \to R^{(J)}$ be set map defined by $j \mapsto e_i$.

3.4.2 Lemma. For any R-module V and any map $\xi: J \to V$, there is a unique R-module homomorphism $\varphi: R^{(J)} \to V$ such that $\xi = \varphi \circ \varepsilon$.

Proof. The condition $\xi = \varphi \circ \varepsilon$ means that $\varphi(e_i) = \xi(j)$ for all $j \in J$ which is equivalent to $\varphi(re_i) = r\xi(j)$ for all $r \in R$ and $j \in J$. It also means that the composition $\varphi \circ \gamma_i : R \to V$ is the *R*-module homomorphism given by $r \mapsto r \xi(\alpha)$. The proposition is therefore a special case of the mapping property for direct sums.

3.4.3 Remark. The linear map $\varphi: R^{(J)} \to V$ is said to be *determined* by the family $\{\xi(j)\}_{j\in J}$ of elements in V. By definition, we have

$$\varphi\left(\sum_{j\in J}r_j\,e_j\right)=\sum_{j\in J}r_j\,\xi(j)\,.$$

3.4.4 Definition. A family $\{v_i\}_{i\in I}$ of elements in an R-module V is *linearly independent* (resp. a *basis*) if the *R*-module homomorphism $R^{(J)} \to V$ determined by this family is injective (resp. bijective). A module is free if it has a basis.

3.4.5 Example. Let *m* be an integer greater than 1. In the \mathbb{Z} -module $\mathbb{Z}/\langle m \rangle$ no element is linearly independent, so the quotient $\mathbb{Z}/\langle m \rangle$ is not a free module.

3.4.6 Example. A free module can have nonzero elements which are not part of a basis. The R-module R^1 is free, but zerodivisors in Rare not part of a basis (they are not linearly independent).

3.4.7 Example. Every nonzero element of an *R*-module can from a linearly independent set without the module being free. The field \mathbb{Q} is a \mathbb{Z} -module with this property: two nonzero rational numbers are always linearly dependent; for all $a, b, c, d \in \mathbb{Z}$ with $b \neq 0$ and $d \neq 0$, we have

$$(bc)\frac{a}{b} - (ad)\frac{c}{d} = 0.$$

Hence, a basis could only have at most one element. However, for any $q \in \mathbb{Q}$, the set $\{n \mid n \in \mathbb{Z}\}$ is a proper subset of \mathbb{Q} .

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-11

Figure 3.4: Commutative diagrams arising from Lemma 3.4.2

If R is a domain and $f, g \in R$ are distinct nonzero elements, then set $\{f,g\}$ is linearly dependent because (-g)f + f(g) = 0.

3.4.8 Proposition. Let V be a free R-module with basis $\{v_j\}_{j\in J}$. For any family $\{w_j\}_{j\in J}$ of elements in an R-module W, there is a unique R-module homomorphism $\psi\colon V\to W$ such that $\psi(v_j)=w_j$ for all $j\in J$. The map ψ is injective (resp. surjective) if and only if the family $\{w_j\}_{j\in J}$ of elements in W be a linearly independent (resp. generating set of W).

Proof. This following from the definitions and Lemma 3.4.2.

3.4.9 Corollary. *Every* R*-module* V *is the quotient of a free* R*-module.*

Proof. When J indexes a generating set of V, there is a surjective R-module homomorphism $R^{(J)} \to V$. In particular, one may take J = V. If submodule U is the kernel of this map, then Theorem 3.1.10 establishes that the R-module V is isomorphic to $R^{(J)}/U$.

3.4.10 Corollary. Every exact sequence of *R*-modules

$$0 \longrightarrow U \stackrel{\varphi}{\longrightarrow} V \stackrel{\psi}{\longrightarrow} W \longrightarrow 0,$$

in which W is a free R-module, splits. To be precise, if $\{w_j\}_{j\in J}$ is a basis for W, and v_j is an element of V such that $\psi(v_j) = w_j$ for all $j \in J$, then the family $\{v_j\}_{j\in J}$ is linearly independent and generates a complementary submodule of $\varphi(U)$.

Proof. Since W is a free R-module, Proposition 3.4.8 demonstrates that there exists a unique R-module homomorphism $\sigma: W \to V$ such that $\sigma(w_j) = v_j$ for all $j \in J$ and Proposition 3.3.7 shows that the exact sequence splits.

With the aim of understanding all free modules, we record the following minor observation.

3.4.11 Lemma. Let K be a field and let $\{u_j\}_{j\in J}$ be linearly independent elements in K-vector space V. Given an element $w\in V$ that does not belong to the submodule U generated by $\{u_j\}_{j\in J}$, the family $\{w\}\cup\{u_j\}_{j\in J}$ is linearly independent.

Proof. Suppose that we have a relation $s w + \sum_{j \in J} r_j u_j = 0$ where $s \in K$, $r_j \in K$ for all $j \in J$, and only finitely many of the r_j are nonzero. If $s \neq 0$, then it would follow that $w = -\sum_{j \in J} (s^{-1} r_j) u_j$ and hence $w \in U$ contrary to hypothesis. Thus, we must have s = 0 and the relation becomes $\sum_{j \in J} r_j u_j = 0$ which implies that $r_j = 0$ for all $j \in J$. Since the only relation among the elements is trivial, the family $\{w\} \cup \{u_j\}_{j \in J}$ is linearly independent.

3.5 **Vector Spaces**

Characterizing modules over a field, also known as vector spaces, leads to deeper insights into all free modules.

3.5.1 Theorem. Every module over a field K is a free.

We must show that every vector space admits a basis. The subsequent more precise theorem accomplishes this task.

3.5.2 Theorem. For any generating set S of a K-vector space V and any linearly independent set \mathcal{L} of V contained in \mathcal{S} , there exists a basis \mathcal{B} of Vsuch that $\mathcal{L} \subseteq \mathcal{B} \subseteq \mathcal{S}$.

Proof of Theorem 3.5.1. The existence of a basis for any vector space V follows from Theorem 3.5.2 by taking $\mathcal{L} = \emptyset$ and $\mathcal{S} = V$.

Proof of Theorem 3.5.2. Let \mathcal{E} be the set of all linearly independent subsets of V that contain \mathcal{L} and are contained in S. This family is nonempty, because $\mathcal{L} \in \mathcal{E}$. Partially order \mathcal{E} by inclusion. Given a chain $\mathcal C$ in $\mathcal E$, we claim that $\mathcal C^* := \bigcup_{L \in \mathcal C} L$ is an upper bound for \mathcal{C} . Consider a finite subset $\{u_1, u_2, ..., u_m\} \subseteq \mathcal{C}^*$. Since \mathcal{C} is a chain, there exists $L \in \mathcal{C}$ such that $\{u_1, u_2, ..., u_m\} \subseteq L$. Hence, the set $\{u_1, u_2, ..., u_m\}$ is linearly independent. It follows that every chain in \mathcal{E} has an upper bound. Hence, Zorn's Lemma implies that there exists a maximal element \mathcal{B} and Lemma 3.4.11 implies that the submodule $\langle \mathcal{B} \rangle$ is equal to V.

- **3.5.3 Corollary.** For any subset \mathcal{B} of a K-vector space V, the following properties are equivalent:
- (a) \mathcal{B} is a basis of V.
- (b) \mathcal{B} is a maximal linearly independent subset of V.
- (c) \mathcal{B} is a minimal generating set of V.

3.5.4 Example. Any ring *R* containing a field *K* may be regarded as a *K*-vector space, so it admits a basis. In particular, every extension field of K has a basis.

3.5.5 Theorem. Two bases of a vector space have the same cardinality.

Proof. Suppose that V is a vector space with a basis \mathcal{B} of cardinality n. We show, by induction on n, that every other basis \mathcal{B}' has at most *n* elements. The claim is trivial for n = 0. When $n \ge 1$, the set \mathcal{B}' is nonempty so choose $w \in \mathcal{B}'$. By Theorem 3.5.2, there exists a subset $\mathcal{C} \subseteq \mathcal{B}$ such that $\{w\} \cup \mathcal{C}$ is a basis of V and $w \notin \mathcal{C}$ because $\{w\} \cup \mathcal{B}$ is obviously a generating set for V. As \mathcal{B} is a basis for V, $\mathcal{C} = \mathcal{B}$ is impossible and hence \mathcal{C} has at most n-1 elements. Let Ube the subspaced generated by \mathcal{C} and W be the subspace generated by $\mathcal{B}' \setminus \{w\}$. Both U and W are complementary to $\langle w \rangle$ and hence

Copyright © 2020, Gregory G. Smith

Last updated: 2020-11-11

The field $\mathbb R$ admits an infinite basis as a Q-vector space.

isomorphic. As U admits a basis with at most n-1 elements, $\mathcal{B}'\setminus\{w\}$ has at most n-1 elements by the induction hypothesis. Therefore, \mathcal{B}' has at most n elements.

Next suppose that V has an infinite basis so $V = \prod_{j \in J} V_j$ where J has infinite cardinality. We claim that every generating set has cardinality at least that of J. Let $\mathcal S$ be a generating set for V. For each $s \in \mathcal S$, let C_s be the finite set of indices $j \in J$ such that the component of s in V_j is nonzero and let $C := \bigcup_{s \in \mathcal S} C_s$. Every $s \in \mathcal S$ belongs to the submodule $\bigoplus_{j \in C} V_j$; since $\mathcal S$ generates V it follows that C = J. Since $|J| = |C| \leq |S|$, the claim follows.

3.5.6 Definition. The *dimension* of a K-vector space V is the cardinality of any of the bases of V and denoted by $\dim_K V$.

3.5.7 Lemma. For any family $\{V_i\}_{i\in I}$ of K-vector spaces, we have

$$\dim_K\Bigl(\bigoplus_{j\in J}V_j\Bigr)=\sum_{j\in J}\dim_KV_j\,.$$

Sketch of Proof. If \mathcal{B}_j denotes a basis for the K-vector space V_j for all $j \in J$, then the union $\mathcal{B} := \bigcup_{j \in J} \mathcal{B}_j$ is a basis for $\bigoplus_{j \in J} V_j$. The formula follows because the \mathcal{B}_j are pairwise disjoint.

3.5.8 Proposition. For any exact sequence of K-vector spaces

$$0 \longrightarrow V_\ell \xrightarrow{\varphi_\ell} V_{\ell-1} \xrightarrow{\varphi_{\ell-1}} \cdots \longrightarrow V_1 \xrightarrow{\varphi_1} V_0 \longrightarrow 0\,,$$
 we have $\sum_{j=0}^\ell (-1)^j \dim_R V_j = 0.$

Proof. Setting $U_{-1} := 0$, $U_{\ell} := 0$, and $U_{j-1} := \operatorname{Im}(\varphi_j) = \operatorname{Ker}(\varphi_{j-1})$ for all $1 \le j \le \ell$, we obtain the short exact sequences

$$0 \longrightarrow U_j \longrightarrow V_j \longrightarrow U_{j-1} \longrightarrow 0$$
,

Corollary 3.4.10 demonstrates that $V_j = U_j \oplus U_{j-1}$ and Lemma 3.5.6 establishes that $\dim_K V_j = \dim_K U_j + \dim U_{j-1}$. The alternating sum telescopes, so we have

$$0 = \sum_{j=0}^{\ell} (-1)^{j} (\dim_{K} U_{j} + \dim_{K} U_{j-1}) = \sum_{j=0}^{\ell} (-1)^{j} \dim_{K} V_{j}. \quad \Box$$

3.5.9 Corollary. For any nonzero ring R and any free R-module V, any two basis of V have the same cardinality.

Idea of Proof. Let I be a maximal ideal in R, let K := R/I be the associated field, and let $\pi: R \to K$ be the canonical map. Consider the K-vector space $\pi^*(V) = K \otimes_R V$ obtained by extending scalars to K and let $\phi: V \to \pi^*(V)$ be the map defined by $v \mapsto 1 \otimes v$. Given $\{v_j\}_{j \in J}$ a basis of V, the family $\{\phi(v_j)\}_{j \in J}$ is a basis of $\pi^*(V)$.

3.5.10 Definition. The cardinality of any basis for a free R-module V is called the rank of V and denoted by $rank_R V$.

When $\dim_K V < \infty$, the *K*-vector space *V* is finite-dimensional and otherwise it infinite-dimensional.