3.4 Free Modules

In analogy with free groups, we identify those modules having only
the relations required by the module axioms.

3.4.1 Definition. Let R be a commutative ring. For any index set J,
consider the R-module RY) := @j.ej R!. For each j € J and each
canonical map y;: R! — RY), set ej := yj(1g). With this notation,
every r:= (r;) € RY) may be written uniquely as r = ZJ.GJ rje;. Let
€:J — RY) be set map defined by j ~ e;.

3.4.2 Lemma. For any R-moduleV and any map & :J — V, thereis a
unique R-module homomorphism ¢ : RY) — V such that& = g oc.

Proof. The condition £ = ¢ o ¢ means that ¢(e;) = §(j) forall j € J
which is equivalent to ¢(re;) = ré&(j)forallr € Rand j € J. It
also means that the composition ¢ o y;: R — V' is the R-module
homomorphism given by r — r £(a). The proposition is therefore a
special case of the mapping property for direct sums. O

3.4.3 Remark. The linear map ¢ : RY) — V is said to be determined
by the family {£(j)};c; of elements in V. By definition, we have

(0(2 ”jej) =Y 1 &0).
JjeJ JjeJ
3.4.4 Definition. A family {v;};c; of elements in an R-module V" is
linearly independent (resp. a basis) if the R-module homomorphism
RY) — V determined by this family is injective (resp. bijective). A
module is free if it has a basis.

3.4.5 Example. Let m be an integer greater than 1. In the Z-module
Z/{m) no element is linearly independent, so the quotient Z/ (m) is
not a free module. &>

3.4.6 Example. A free module can have nonzero elements which are
not part of a basis. The R-module R! is free, but zerodivisors in R
are not part of a basis (they are not linearly independent). <>

3.4.7 Example. Every nonzero element of an R-module can from a
linearly independent set without the module being free. The field
Q is a Z-module with this property: two nonzero rational numbers
are always linearly dependent; for all a,b,c,d € Z with b # 0 and
d # 0, we have
b2 —(ad)s =o.
b d

Hence, a basis could only have at most one element. However, for
any q € Q, the set{nq | n € Z} is a proper subset of Q. <
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Figure 3.4: Commutative diagrams
arising from Lemma 3.4.2

If R is a domain and f,g € R are
distinct nonzero elements, then set
{f, g} is linearly dependent because

(-&)f + f(g) =0.
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3.4.8 Proposition. LetV be a free R-module with basis {v;}c;. For any
family{w;}c; of elements in an R-module W, there is a unique R-module
homomorphism: V — W such thaty(v;) = w; forall j € J. The map
Y is injective (resp. surjective) if and only if the family {w;} ey of elements
in W be a linearly independent (resp. generating set of W ).

Proof. This following from the definitions and Lemma 3.4.2. O
3.4.9 Corollary. Every R-moduleV is the quotient of a free R-module.

Proof. When J indexes a generating set of V, there is a surjective
R-module homomorphism RY) — V. In particular, one may take
J = V. If submodule U is the kernel of this map, then Theorem 3.1.10
establishes that the R-module V is isomorphic to RY)/U. O

3.4.10 Corollary. Every exact sequence of R-modules

® P

0 U V w 0,

in which W' is a free R-module, splits. To be precise, if {w;};e; is a basis
for W, and v; is an element of V' such that(v;) = w; forall j € J, then
the family {v;}c; is linearly independent and generates a complementary
submodule of p(U).

Proof. Since W is a free R-module, Proposition 3.4.8 demonstrates
that there exists a unique R-module homomorphism oc: W — V
such that o(w;) = v; for all j € J and Proposition 3.3.7 shows that
the exact sequence splits. O

With the aim of understanding all free modules, we record the
following minor observation.

3.4.11 Lemma. Let K be a field and let {u;};c; be linearly independent
elements in K -vector space V. Given an element w € V that does not
belong to the submodule U generated by {u};;, the family {w} U {u;}es
is linearly independent.

Proof. Suppose that we have a relation sw + Zje] rju; = 0 where
s € K, r; € K for all j € J, and only finitely many of the r; are
nonzero. If s # 0, then it would follow that w = — Z].GJ(S‘1 i) u;
and hence w € U contrary to hypothesis. Thus, we must have s = 0
and the relation becomes }; jer Tjwj = 0 which implies that r; = 0
for all j € J. Since the only relation among the elements is trivial,
the family {w} U {;}¢; is linearly independent. O



3.5 Vector Spaces

Characterizing modules over a field, also known as vector spaces,
leads to deeper insights into all free modules.

3.5.1 Theorem. Every module over a field K is a free.

We must show that every vector space admits a basis. The sub-
sequent more precise theorem accomplishes this task.

3.5.2 Theorem. For any generating set 8 of a K -vector space V' and any
linearly independent set £ of V' contained in S, there exists a basis B of V
suchthat L C B C 8.

Proof of Theorem 3.5.1. The existence of a basis for any vector space
V follows from Theorem 3.5.2 by taking L = @ and § = V. O

Proof of Theorem 3.5.2. Let & be the set of all linearly independent
subsets of IV that contain £ and are contained in 8. This family is
nonempty, because £ € &. Partially order & by inclusion. Given
a chain € in &, we claim that ¢* := ULeeL is an upper bound for
C. Consider a finite subset {u;, u,, ..., u,,} C C*. Since C is a chain,
there exists L € € such that {u;,u,,..,u,,} € L. Hence, the set
{u;, u,,...,u,,} is linearly independent. It follows that every chain
in & has an upper bound. Hence, Zorn’s Lemma implies that there
exists a maximal element B and Lemma 3.4.11 implies that the sub-
module (B) is equal to V. O

3.5.3 Corollary. For any subset B of a K -vector space V, the following
properties are equivalent:

(a) Bisabasisof V.

(b) B is a maximal linearly independent subset of V.

(c) B is a minimal generating set of V. O

3.5.4 Example. Any ring R containing a field K may be regarded as
a K-vector space, so it admits a basis. In particular, every extension
field of K has a basis. <

3.5.5 Theorem. Two bases of a vector space have the same cardinality.

Proof. Suppose that V' is a vector space with a basis B of cardinality
n. We show, by induction on n, that every other basis B’ has at most
n elements. The claim is trivial for n = 0. When n > 1, the set B’
is nonempty so choose w € B’. By Theorem 3.5.2, there exists a
subset ¢ C B such that {w} U € is a basis of IV and w ¢ € because
{w} U B is obviously a generating set for V. As B is a basis for I,
C = B isimpossible and hence € has at most n — 1 elements. Let U
be the subspaced generated by € and W be the subspace generated
by B’ \ {w}. Both U and W are complementary to (w) and hence
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The field R admits an infinite basis as
a Q-vector space.
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When dimg V' < o, the K-vector
space V is finite-dimensional and
otherwise it infinite-dimensional.

isomorphic. As U admits a basis with at most n—1 elements, B’ \ {w}
has at most n — 1 elements by the induction hypothesis. Therefore,
B’ has at most n elements.

Next suppose that I has an infinite basis so V' = [| jer V; where
J has infinite cardinality. We claim that every generating set has
cardinality at least that of J. Let 8 be a generating set for V. For
each s € 8, let Cy be the finite set of indices j € J such that the
component of s in V; is nonzero and let C := |J,_, C;. Everys € §

belongs to the submodule @j <c Vs since 8 generates V it follows
that C = J. Since |J| = |C| £ |S|, the claim follows. O

3.5.6 Definition. The dimension of a K-vector space V is the cardi-
nality of any of the bases of IV and denoted by dimg V.

3.5.7 Lemma. For any family {V}c; of K -vector spaces, we have
dimg (P V;) = Y, dimg V.
jeJ JjeJ
Sketch of Proof. 1f B; denotes a basis for the K-vector space V; for
all j € J, then the union 38 := J,; B is a basis for P,; V;. The
formula follows because the B; are pairwise disjoint. O
3.5.8 Proposition. For any exact sequence of K -vector spaces
0 Vg Pe Vg_l Pe-1 Vl P1 VO 0,

we have ijo(_l)j dimg V; = 0.

Proof. Setting U_, := 0, U, := 0, and U;_; := Im(¢p;) = Ker(p;_;)
for all1 £ j < ¢, we obtain the short exact sequences

0 U] V] Uj—l E— 0,
Corollary 3.4.10 demonstrates that Vi=UjeU;, and Lemma 3.5.6
establishes that dimg V; = dimg U; + dim U;_,. The alternating

sum telescopes, so we have

¢ ¢
0= > (=1)/(dimg U; + dimg U;_;) = D (-1 dimg V;. O
Jj=0 j=0
3.5.9 Corollary. For any nonzero ring R and any free R-module V', any
two basis of V' have the same cardinality.

Idea of Proof. LetI be amaximalidealin R, let K := R/I be the asso-
ciated field, and let 7 : R —» K be the canonical map. Consider the
K-vector space (V) = K Qg V obtained by extending scalars to
Kandlet¢:V — 7*(V) be the map defined by v = 1 ® v. Given
{vj}jes a basis of V, the family {¢(v;)} ¢, is a basis of 77*(V). O

3.5.10 Definition. The cardinality of any basis for a free R-module
V is called the rank of IV and denoted by ranky V.



