3.6 Submodules of Free Modules

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-17

Over a field, submodules of a free module are automatically free because every module over a field is free. What condition on the ring guarantee that a submodule of a free module is free?

3.6.1 Theorem. *Let* R *be a principal ideal domain. Every submodule of* a finitely generated free R-module of rank n is free of rank at most n.

We actually prove a more precise result.

3.6.2 Lemma. Let R be a principal ideal domain and let V be a finitely generated free R-module. For any nonzero submodule $U \subset V$, there exists elements $r \in R$, $v \in V$, $u \in U$ and submodules $V' \subseteq V$, $U' \subseteq U$ such that u = r v, $U' = V' \cap U$, $V = \langle v \rangle \oplus V'$, and $U = \langle u \rangle \oplus U'$.

Proof. For any *R*-module homomorphism $\varphi: V \to R$, the image $\varphi(U)$ is an ideal in R. The family of these ideals in nonempty. Since principal ideal domains are noetherian, this family has a maximal element $\psi(U)$ for some *R*-module homomorphism $\psi: U \to R$. By hypothesis, we have $U \neq 0$, so $\psi(U) \neq 0$. Since R is a principal ideal, there exists a nonzero element $r \in R$ such that $\psi(U) = \langle r \rangle$. As $r \in \psi(U)$, there also exists an element $u \in U$ such that $\psi(u) = r$.

We claim that, for all R-module homomorphisms $\varphi: V \to R$, the element *r* divides $\varphi(u)$. Suppose that *d* generates the ideal $\langle r, \varphi(u) \rangle$ and let $a, b \in R$ satisfy $d = ar + b\varphi(u)$. Consider the R-module homomorphism $\theta := a \psi + b \varphi$. Since $r \in \langle d \rangle$, we have $\psi(U) \subseteq \langle d \rangle$. We also have $d = ar + b\varphi(u) = (a\psi + b\varphi)(u) = \theta(u) \in \theta(U)$, whence $\langle d \rangle \subseteq \theta(U)$. It follows that $\psi(U) \subseteq \theta(U)$. The maximality of $\psi(U)$ implies that $\psi(U) = \theta(U)$ and $\langle r \rangle = \langle d \rangle$, so the element rdivides $\varphi(u)$.

By hypothesis, there is a positive integer n such that $V \cong \bigoplus_{i=1}^{n} R$. Identify the element $u \in U \subseteq V$ with $(s_1, s_2, ..., s_n) \in \bigoplus_{i=1}^n R$. Each component $s_i := \varpi_i(u)$ is the image of u under the canonical map $\varpi_i: V \to R$, so the previous paragraph establishes that r divides all of them. Hence, there exists elements $c_1, c_2, ..., c_n \in R$ such that $s_i = r c_i$ for all $1 \le i \le n$. Let $v \in V$ be the element identified with $(c_1, c_2, ..., c_n) \in \bigoplus_{i=1}^n R$. By construction, we have u = rv and we see that $r = \psi(u) = \psi(rv) = r\psi(v)$. Since $r \neq 0$ and R is a domain, we deduce that $\psi(v) = 1_R$.

Let $V' := \text{Ker}(\psi)$ and set $U' := V' \cap U$. Every element $w \in V$ may be written as $w = \psi(w)v + (w - \psi(w)v)$. By linearity, we obtain $\psi(w - \psi(w)v) = \psi(w) - \psi(w)\psi(v) = 0, \text{ so } w - \psi(w)v \in \text{Ker}(\psi)$ and $V = \langle v \rangle + V'$. On the other hand, the relation $rv \in F'$ implies that $0 = \psi(r v) = r \psi(v)$, so r = 0 and $\langle v \rangle \cap V' = 0$. Thus, we deduce that $V = \langle v \rangle \oplus V'$.

When $w \in U$, we see that the element r divides $\psi(w)$ because $\psi(w) \in \psi(U) = \langle r \rangle$. Writing $\psi(w) = t w$ for some $t \in R$, we have $\psi(w) v = t r v = t u$. Since $w - \psi(w) v = w - t u \in U \cap V' = U'$, the argument in the previous paragraph shows that $U = \langle u \rangle \oplus U'$. \square

Proof of Theorem 3.6.1. Let *U* be a submodule of a finitely generated free *R*-module *V*. The case U=0 is vacuous, so we may assume that $U\neq 0$. Applying Lemma 3.6.2 to the submodule $U\subset V$ gives an element $u_1\in U$ and a submodule $U_1\subseteq U$ such that $U=\langle u_1\rangle\oplus U_1$. If $U_1=0$, then we are done. Otherwise applying Lemma 3.6.2 to the submodule $U_1\subseteq V$, we obtain an element $u_2\in U_1$ and a submodule $U_2\subset U_1$ such that $U=\langle u_1\rangle\oplus\langle u_2\rangle\oplus U_2$. Continuing this process produces $u_1,u_2,...,u_m\in U$ such that $U=\langle u_1\rangle\oplus\langle u_2\rangle\oplus\cdots\oplus\langle u_m\rangle\oplus U_m$ as long as the *R*-module U_m is nonzero. However, $m\leqslant \operatorname{rank}_R V$ because $u_1,u_2,...,u_m$ are linearly independent in *V*. It follows that the process must terminate; $U_m=0$ for some $m\leqslant \operatorname{rank}_R V$. We conclude that $U=\langle u_1\rangle\oplus\langle u_2\rangle\oplus\cdots\oplus\langle u_m\rangle$. □

3.6.3 Remark. The hypothesis in Theorem 3.6.1 that R is a principal ideal domain is necessary. The ring R fails to be a principal ideal domain if it has a zerodivisor or a non-principal ideal.

- When *R* is not a domain, there exists nonzero elements $a, b \in R$ such that ab = 0. In this case, the principal ideal $\langle a \rangle$ is not a free *R*-module.
- When the domain R has a non-principal ideal I, any two generators f, g are not linear independent because (f)g + (-g)f = 0.

3.6.4 Corollary. A domain R is a principal ideal domain if and only if, for any finitely generated R-module V and any surjective R-module homomorphism $\varphi_0: R^{m_0} \to V$, there exists a nonnegative integer m_1 and an R-module homomorphism $\varphi_1: R^{m_1} \to R^{m_0}$ such that the sequence

$$0 \longrightarrow R^{m_1} \xrightarrow{\varphi_1} R^{m_0} \xrightarrow{\varphi_0} V \longrightarrow 0$$

is exact.

Proof.

- (\Rightarrow) Corollary 3.4.9 shows that there is a nonnegative integer m_0 and a surjective R-module homomorphism $\varphi_0: R^{m_0} \to V$. Since Theorem 3.6.1 establishes that the submodule $\operatorname{Ker}(\varphi_0)$ is free, the choice of an isomorphism $\varphi_1: R^{m_1} \to \operatorname{Ker}(\varphi_0)$ gives the desired exact sequence.
- (\Leftarrow) Let *I* be an ideal in *R* and consider the exact sequence

$$0 \longrightarrow I \longrightarrow R \longrightarrow \frac{R}{I} \longrightarrow 0.$$

Theorem 3.6.1 implies that the ideal I is a free submodule of R^1 of rank at most 1. Thus, any nonzero ideal is principal.

3.7 **Matrices**

Copyright © 2020, Gregory G. Smith Last updated: 2020-11-17

Choosing bases for the source and the target, we obtain a concrete representation for any homomorphism between free modules.

3.7.1 **Definition**. Let *R* be a commutative ring. An $(m \times n)$ -matrix over R is a rectangular array

$$\mathbf{A} := \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} = [a_{i,j}]$$

where $a_{i,j} \in R$. The set Mat(m, n, R) of matrices over the ring R has a R-module structure. Addition and scalar multiplication are defined entrywise: for all $r \in R$ and all $A, B \in R^{m \times n}$, we have

$$rA + B = r[a_{i,j}] + [b_{i,j}] = [ra_{i,j} + b_{i,j}].$$

3.7.2 **Definition**. Let *V* be a finitely generated free *R*-module with basis $(v_1, v_2, ..., v_n)$. For any $v \in V$, there exists unique elements $b_1, b_2, ..., b_n \in R$ such that as $v = b_1 v_1 + \cdots + b_n v_n$. The matrix of vwith respect to this basis is defined to be

$$\mathbf{M}(v) := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \in \mathrm{Mat}(n, 1, R).$$

Let W be a free R-module with basis $(w_1, w_2, ..., w_m)$ and consider an *R*-module homomorphism $\varphi: V \to W$. For all $1 \le k \le n$, there exists unique elements $a_{1,k}, a_{2,k}, ..., a_{m,k} \in R$ such that

$$\varphi(v_k) = a_{1,k} w_1 + a_{2,k} w_2 + \dots + a_{m,k} w_m$$
.

The *matrix of* φ with respect to these bases is

$$\mathbf{M}(\varphi) := \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} = [a_{i,j}].$$

This definition implies that, for all $r \in R$ and all $\varphi, \psi \in \operatorname{Hom}_R(V, W)$, we have $M(r\varphi) = r M(\varphi)$ and $M(\varphi + \psi) = M(\varphi) + M(\psi)$. In other words, once the bases of the source and target are fixed, the map M: $\operatorname{Hom}_R(V, W) \to \operatorname{Mat}(m, n, R)$ is an *R*-module isomorphism.

3.7.3 Definition. For all $A \in Mat(\ell, m, R)$ and all $B \in Mat(m, n, R)$, the *product* AB \in Mat(ℓ , n, R) is defined by AB := $\left[\sum_{k} a_{i,k} b_{k,j}\right]$. This map $Mat(\ell, m, R) \times Mat(m, n, R) \rightarrow Mat(\ell, n, R)$ inherits the

following properties from the underlying ring R. For all $r \in R$ and all compatible matrices A, B, C, we have

$$A(B+C) = AB + AC$$
 $(AB)C = A(BC)$
 $(A+B)C = AC + BC$ $r(AB) = (rA)B = A(rB)$.

However, we typically have $AB \neq BA$.

3.7.4 Lemma. Let V and W be finitely generated free R-modules with chosen bases. For all $v \in V$ and $\varphi \in \operatorname{Hom}_{\mathbb{R}}(V, W)$, we have

$$M(\varphi(v)) = M(\varphi) M(v)$$

Proof. Let $(v_1, v_2, ..., v_n)$ is the chosen basis for the free *R*-module V. If $M(\varphi) = [a_{i,j}] \in Mat(m, n, R)$ and $v = b_1 v_1 + b_2 v_2 + \dots + b_n v_n$, then we have

$$\varphi(v) = \sum_{j=1}^{n} b_j \varphi(v_j) = \sum_{j=1}^{n} b_j \left(\sum_{i=1}^{m} a_{i,j} w_i \right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} b_j \right) w_i,$$

so
$$\mathbf{M}(\varphi(v)) = [\sum_i a_{i,j} b_j]$$
 as required.

3.7.5 **Theorem.** Let U, V, W be finitely generated free R-modules with chosen bases. For any $\psi \in \operatorname{Hom}_R(U,V)$ and any $\varphi \in \operatorname{Hom}_R(V,W)$, we have $M(\varphi \circ \psi) = M(\varphi) M(\psi)$.

Proof. For all $u \in U$, Lemma 3.7.4 gives

$$M(\varphi \circ \psi) \ M(u) = M((\varphi \circ \psi)(u)) = M(\varphi(\psi(u)))$$
$$= M(\varphi) \ M(\psi(u)) = M(\varphi) \ M(\psi) \ M(u).$$

Since M(u) is arbitrary, the claim follows.

- 3.7.6 Definition. A matrix whose rows and columns have the same index set is *square*. Addition and multiplication of square matrices over a commutative R induce a noncommutative ring structure on Mat(n, n, R). The multiplicative unit is identity matrix $I := [\delta_{i,i}]$. The group of invertible elements is GL(n, R).
- **3.7.7 Proposition.** Let R be a commutative ring and let V be a finitely generated free R-module with a chosen basis. The map $\varphi \mapsto \mathbf{M}(\varphi)$ defines both a ring isomorphism between $\operatorname{End}_R(V)$ and $\operatorname{Mat}(n, n, R)$ and group isomorphism between $Aut_R(V)$ and GL(n, R).

Proof. Follows immediately from the definitions.

Theorem 3.7.5 justifies the definition of matrix multiplication.