3.6 Submodules of Free Modules

Over a field, submodules of a free module are automatically free
because every module over a field is free. What condition on the
ring guarantee that a submodule of a free module is free?

3.6.1 Theorem. LetR be a principal ideal domain. Every submodule of
a finitely generated free R-module of rank n is free of rank at most n.

We actually prove a more precise result.

3.6.2 Lemma. LetR be a principal ideal domain and let V' be a finitely
generated free R-module. For any nonzero submodule U C V, there exists
elementsr € R,v € V,u € U and submodules V' C V, U’ C U such
thatu=rv, U =V'nU,V=WL®V',andU ={uy U'.

Proof. For any R-module homomorphism ¢ : V' — R, the image
@(U)is anidealin R. The family of these ideals in nonempty. Since
principal ideal domains are noetherian, this family has a maximal
element (U) for some R-module homomorphism ¢ : U - R. By
hypothesis, we have U # 0, so (U) # 0. Since R is a principal
ideal, there exists a nonzero element r € R such that p(U) = (r).
Asr € YP(U), there also exists an element u € U such that {(u) = r.

We claim that, for all R-module homomorphisms ¢ : V' —» R, the
element r divides (u). Suppose that d generates the ideal (r, p(u))
and let a,b € R satisfy d = ar + bg(u). Consider the R-module
homomorphism 6 := a + bg. Since r € (d), we have P(U) C (d).
We also have d = ar + be(u) = (ay + bp)(u) = 6(u) € 6(U),
whence (d) C 6(U). It follows that ¥(U) € 6(U). The maximality
of P(U) implies that P(U) = 6(U) and (r) = (d), so the element r
divides p(u).

By hypothesis, there is a positive integer n such that I @in:l R.
Identify the element u € U C V with (s}, 5, .., 5,) € @;_, R. Each
component s; := @;(u) is the image of u under the canonical map
w;: V — R, so the previous paragraph establishes that r divides
all of them. Hence, there exists elements ¢y, ¢,, ..., ¢, € R such that
s; =rc;foralll < i < n. Letv € V be the element identified with
(A = 69:;1 R. By construction, we have u = rv and we
see that r = ¥p(u) = P(rv) = rp(v). Since r # 0 and R is a domain,
we deduce that (v) = 1.

Let V' := Ker(®) and set U’ := V' nU. Every element w € VV may
be written as w = P(w) v + (w — P(w) v). By linearity, we obtain
P(w — P(w) v) = P(w) — P(W)P(V) = 0, 50 w — P(W) v € Ker(y)
and V' = (v) + VV'. On the other hand, the relation r v € F' implies
that 0 = Y(rv) = rip(v),sor = 0 and (V)NV' = 0. Thus, we deduce
thatV =(v)e V.
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When w € U, we see that the element r divides (w) because
PY(w) € P(U) = (r). Writing p(w) = tw for some t € R, we have
Y(w)v=trv=tu. Sincew—-Pp(w)v=w—-tueUnV’' = U, the
argument in the previous paragraph shows that U =(u) U’. [

Proof of Theorem 3.6.1. Let U be a submodule of a finitely generated
free R-module V. The case U = 0 is vacuous, SO we may assume
that U # 0. Applying Lemma 3.6.2 to the submodule U c V gives
anelementu; € U and asubmodule U; C U suchthat U = (u;)®U;.
If U, = 0, then we are done. Otherwise applying Lemma 3.6.2 to the
submodule U; C V, we obtain an element u, € U, and a submodule
U, c U; such that U = (u;) @ (u,) ® U,. Continuing this process
produces Uy, Uy, ..., U, € Usuchthat U = (u)@Ou,)®---®{u,,)® U,
as long as the R-module U,, is nonzero. However, m < rankp V'
because u,, u,, ..., U,, are linearly independent in IV. It follows that
the process must terminate; U,, = 0 for some m < ranky V. We
conclude that U = (u;) ® (U,) ® --- D (Uy,). O

3.6.3 Remark. The hypothesis in Theorem 3.6.1 that R is a principal
ideal domain is necessary. The ring R fails to be a principal ideal
domain if it has a zerodivisor or a non-principal ideal.

« When R is not a domain, there exists nonzero elements a,b € R
such that ab = 0. In this case, the principal ideal (a) is not a free
R-module.

+ When the domain R has a non-principal ideal I, any two genera-
tors f, g are not linear independent because (f) g + (—g) f = 0.

3.6.4 Corollary. A domain R is a principal ideal domain if and only if,
for any finitely generated R-module V' and any surjective R-module ho-
momorphism ¢, : R™ — V, there exists a nonnegative integer m; and
an R-module homomorphism ¢, : R™ — R™o such that the sequence

0 Rm 2L, gmo 20, 0

is exact.

Proof.

(=) Corollary 3.4.9 shows that there is a nonnegative integer m,
and a surjective R-module homomorphism ¢, : R — V. Since
Theorem 3.6.1 establishes that the submodule Ker(g,) is free, the
choice of an isomorphism ¢; : R™ — Ker(¢p,) gives the desired
exact sequence.

() LetI be an ideal in R and consider the exact sequence

R
0 I R T 0.

Theorem 3.6.1 implies that the ideal I is a free submodule of R! of
rank at most 1. Thus, any nonzero ideal is principal. O




3.7 Matrices

Choosing bases for the source and the target, we obtain a concrete
representation for any homomorphism between free modules.

3.7.1 Definition. Let R be a commutative ring. An (m X n)-matrix
over R is a rectangular array

A Qi1 0 Qip
| Q21 Gz - Ay _
A=|" > “n L =Ta; ;]
am,l am,z e am,n

where a; ; € R. The set Mat(m, n, R) of matrices over the ring R
has a R-module structure. Addition and scalar multiplication are
defined entrywise: for all ¥ € R and all A, B € R™", we have

rA+B= r[al-,j] + [bi,j] = [rai,j + bi,j]‘

3.7.2 Definition. Let IV be a finitely generated free R-module with
basis (vy, U,,...,U,). For any v € V, there exists unique elements
by, b,,...,b, € Rsuch thatas v = b, v; + --- + b, v,,. The matrix of v
with respect to this basis is defined to be

b,
. | b2
M(v) :=| ?| € Mat(n,1,R).
by
Let W be a free R-module with basis (w,, w,, ..., W,,) and consider
an R-module homomorphism ¢ : V' — W. For all 1 < k < n, there
exists unique elements a, y, , k, ..., @k € R such that

P(U) = AWy + AWy + -+ + Ay g Wy -

The matrix of ¢ with respect to these bases is

a;p Qip a1 n
a a a

M(p):=| ">t 722 2 =lagl.
am,l am,2 o am,n

This definition implies that, forall ¥ € Rand all ¢, 9 € Homg(V, W),
we have M(r ¢) = r M(¢) and M(p + ) = M(¢p) + M(®). In other
words, once the bases of the source and target are fixed, the map
M : Homg(V, W) — Mat(m, n, R) is an R-module isomorphism.

3.7.3 Definition. For all A € Mat(¢, m,R) and all B € Mat(m, n, R),

the product AB € Mat(¢,n,R) is defined by AB := [}, a; by j]-

This map Mat(¢, m, R) x Mat(m, n,R) — Mat(¢, n, R) inherits the
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Theorem 3.7.5 justifies the definition
of matrix multiplication.

following properties from the underlying ring R. For all r € R and
all compatible matrices A, B, C, we have

AB+C)=AB+AC (AB)C = A(BC)
(A+B)C=AC+BC r(AB) = (rA)B = A(rB).

However, we typically have AB # BA.

3.74 Lemma. LetV and W be finitely generated free R-modules with
chosen bases. For allv € V and ¢ € Homg(V, W), we have

M(p(v)) = M(p) M(v)

Proof. Let (vy, U,,...,0,,) is the chosen basis for the free R-module
V. If M(p) = [a;;] € Mat(m,n,R) and U = b; Uy + b Uy + -+ + b, Uy,
then we have

i=1\j=

p(v) = ‘21 bjp(v)) = '21 b; (_Zlai,j wi) =2 ( G bj) w;,
j= j=1 " \i=

so M(p(v)) = [Zj a; j b;] as required. 0

3.7.5 Theorem. Let U, V, W be finitely generated free R-modules with
chosen bases. For any ¥ € Homg(U, V) and any ¢ € Homgz(V, W),

we have M(p o 9) = M(p) M(®).

Proof. Forallu € U, Lemma 3.7.4 gives

M(g © ) M(w) = M((p o P)(w)) = M(p(%(u)))
= M(p) M(%(w)) = M(¢) M%) M(w).

Since M(u) is arbitrary, the claim follows. O

3.7.6 Definition. A matrix whose rows and columns have the same
index set is square. Addition and multiplication of square matrices
over a commutative R induce a noncommutative ring structure on
Mat(n, n,R). The multiplicative unit is identity matrix I := [J; ;].
The group of invertible elements is GL(n, R).

3.7.7 Proposition. Let R be a commutative ring and let V' be a finitely
generated free R-module with a chosen basis. The map ¢ — M(¢) defines
both a ring isomorphism between Endg (V') and Mat(n, n, R) and group
isomorphism between Autgz (V") and GL(n, R).

Proof. Follows immediately from the definitions. O



