3.10 Finitely Generated Abelian Groups

Specializing the structure theorem for finitely generated modules
over a principal ideal domain, we obtain a structure theorem for
finitely generated abelian groups.

3.10.1 Theorem (Structure). For any finitely generated abelian group G,
there exists unique nonnegative integers r, ¢ and unique positive integers
41,92, >4, such thatq, > 1, q; divides q,; foralll1 < j < ¢, and
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Proof. Since the ring Z of integers is a principal ideal domain, this
theorem follows immediately from Theorem 3.9.1. O

3.10.2 Corollary. LetG be a finite abelian group. Assuming that, for any
positive integer n, the number of elements g € G such thatng = 0 is at
mostn, the groups G is cyclic.

Proof. By Theorem 3.10.1, there exists a nonnegative integers ¢ and
positive integers ¢, q,, -, 4, such that g, > 1, g; divides g, for all

1< j<é¢,and
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However, if ¢ > 1, then |G| > q, and q, g = 0 for all g € G contra-
dicting the hypothesis. Therefore, we conclude that¢ = 1 and G is
cyclic. O

3.10.3 Corollary. LetK be a field. Any finite subgroup the multiplicative
group K* is cyclic.

Proof. Letnbe apositive integer. A polynomial K[x] of degree n has
at most n linear factors. Since the polynomial ring K[x] is a unique
factorization domain, it follows any polynomial of degree n has at
most nroots. In particular, there are at most n elements a € K such
thata” — 1 = 0. Applying Corollary 3.10.2, we deduce that any finite
subgroup the multiplicative group K* is cyclic. O

There is a second form of Theorem 3.10.1 involving prime powers
which is often more convenient to use in applications.

3.10.4 Corollary. For any finitely generated abelian group G, there exists
unique nonnegative integersr, k, prime integers p;, Pz, ... , i and positive
integers ey, e,, ..., €, such that
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The history of Theorem 3.10.1 is
complicated because it was first
proven when group theory was not
well-established. Carl Friedrick
Gauss (1801) proves an early form
for finite groups and Leopold Kro-
necker (1870) provides a complete
proof. The finitely presented case is
solved by Henry Smith (1861), how-
ever the finitely generated case

is sometimes credited to Henri
Poincaré (1900). Emmy Noether (1926)
generalizes the Kronecker argument
to finitely generated abelian groups.
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Sketch of Proof. The prime factorization q = p{'p5’ --- p;* combined

with Theorem 2.3.11 imply that
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3.10.5 Problem. Find, up to isomorphism, all of the abelian groups
of order 8. Identify the isomorphism class of each of the following

(Fir)/(-1), (Z/(16))*,

Solution. Corollary 3.10.4 implies that the abelian groups of order
8 = 23 are isomorphic to
Z_ L oL L ol oL
(23)” (22) 7 (2)’ (2) 72 T2
Since (Z/ (15))>< ={1,2,4,7,8,11,13, 14}, every element has order 1,
2, or 4, so we see that (Z/ (15))X = 7/(2%) @ Z/(2). Similarly, we have

(F17)*

and (F;)*/(-1) = {1,2,3,4,5,6,7,8} which is generated by 3, so
(F17)*/{=1)y = Z/(23). The field Fg has characteristic 2, so every
element added to itself is 0, whence [F; = 7Z/2) @ Z/2) & Z/2).
Because we have (Z/(16))* = {1,3,5,7,9,11,13,15}, every element
has order 1, 2, or 4, so (Z/(16))* = Z/ (2*) @ Z/(2). Finally, the group
Mg is cyclic so pg = 7/ (23). O

O

(Z/ <15>)X s I]:;— ) Mg -

D or

= {+1,+2,+3, +4, +5, +6,+7, +8}

3.10.6 Problem. Determine the number of abelian groups of order
720 up to isomorphism.

Solution. Since 720 = 2*- 32 .5, the Corollary 3.10.4 implies that the
abelian groups of order 720 are isomorphic to
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There are 10 isomorphic classes of abelian groups of order 720. [

3.10.7 Remark. For any prime integer p, Corollary 3.10.4 implies that
the number of abelian groups of order p¥, up to isomorphism, is the
number of integer partitions of k.



3.11 Jordan Canonical Form

The structure theorem for all finitely generated modules over a prin-
cipal ideal domain has a striking application to linear algebra.

3.11.1 Proposition. Let K be a field and let V' be a finite-dimensional
K -vector space. Choosing a linear operator T : V' — V is equivalent to
endowing V with structure of a module over the polynomial ring K[t].

Sketch of Proof.

(=) Fix alinear operator T : V' — V. To equip V with the structure
of a K[t]-module, we must define the product of a polynomial
f=ay+a;t+ - +a,t" € K[t] and a vector v € V. We set
fui=a,V +a, T(v) +a, T?>(v) + --- + a, T"(v). The right side is
[f(T)](v) where f(T) = agI+a, T+a, T?>+---+a, T" € Endg (V).
One verifies that this makes V' into a K[t]-module.

(<) Multiplication by ¢t definesamap T:V — V. Foralla € K
and all v,w € V, the K[t]-module structure demonstrates that
Tlav+w) =t(av+w) =atv+tw =aT@)+ T(w),so T is
a linear operator on V. Identifying elements in K with constant
polynomials, we see that I is a K-vector space. O

3.11.2 Theorem. LetV be a nonzero finite-dimensional K -vector space.

For any linear operator T : V' — V, there exists a positive integer ¢ and
unique monic polynomials q;,q,,...,q, € K|t] of positive degree such
that q; divides q,, for all1 < j < ¢ and

o Klt] . K[t] K[t]

~ Qv (q2) (Qe)
Proof. Proposition 3.11.1 shows that V' is a K[t]-module. Since K[t]
is a principal ideal domain, Theorem 3.9.1 expresses IV as a direct
sum of cyclic K[t]-modules. There are no free summands, because
V is finite-dimensional. O

@

3.11.3 Definition. The polynomial g,(¢t) in Theorem 3.11.2 is called
the minimal polynomial of the linear operator T. It is the unique

monic polynomial m; € K|[t] of lowest degree such that m(T) = 0.
The characteristic polynomial of T is the product y;(t) := Hf=1 q; ().

3.11.4Remark. Supposethatq = by+b; t+---+b,,_; t"™ 1 +t™ € K[t].

Relative to the basis 1, t, t2, ..., t"! for K[t]/{(q), we have

0 0 0 —b,
10 0 -—b
M(T):=o0 1 0 -—b,
00 - 1 —by,,

This is called the companion matrix of q.
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In particular, multiplying by ¢ is the
same as acting by T. Multiplying by a
polynomial of degree 0 is just scalar
multiplication by an element in K.
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Every square matrix over a field
is similar to a matrix in rational
canonical form.

The Jordan canonical form is named
after Camille Jordan, who first stated
it in 1870.

For all nonnegative j, observe that

tt=A =1 =)+ A=) .

Over an algebraically closed field,
every square matrix is similar to a
matrix in Jordan canonical form.

The Jordan canonical form for the
matrix of the desired linear operators
is one of the following:

—
[l NeleleX=Tly,)

CO0oQoUO CoOOoQUO
COQUIOO COHOOO
OOUOOO OCOONOOO

HOAOOOO OO0000
[i=l=leleleie folelelele]
—_—

—_—
—_—

OQOUIOOO OHOI0OO OO0 OO

HOAOCOOO OON0CO0O00 HOOOOO
QOO0 00 OO0 OO0 OO0 O

r 1T 1T 1
CO0O+U OO0V OOOO+WU
OCOO0OQOUIO COOQOULO COOoOoWULO
CO—UNOO OCOQOUOO OOHOOO

3.11.5 Theorem (Rational canonical form). LetK be afield andletV be
a finite-dimensional K -vector space. For any linear operator T : V — V,
there exists a basis of V' such that the matrix M(T) is block diagonal and
each block is a companion matrix. O

3.11.6 Corollary. LetK bean algebraic closed field and letV be anonzero
finite-dimensional K -vector space. For any linear operator T :V — V,
there exists a positive integer k, elements 4., 1, ..., 4, € K, and positive
integers ey, e,, ..., €, such that

KIt] Kit] KIt]
((t=2)2) ~ ((t = A,)%2) ((t = Ap)k)
Sketch of Proof. Over an algebraically closed field, every polynomial

factorsinto a product of linear ones. Combining the factorization of
the polynomials g; and Theorem 2.3.11 yield the decomposition. [

~

3.11.7 Remark. Relative to the basis 1, —A, (t —1)?, ..., (t = A)¢" ! for
the K-vector space K[t]/((t — 1)¢), we have

A 0 - 0O
1 4 - 0O
mMn=9 ;00
00 - 40
o0 - 1 A

This is called the Jordan matrix of (t — A)°.

3.11.8 Theorem (Jordan canonical form). LetK be algebraically closed
and let V be a finite-dimensional nonzero K -vector space. For any linear
operator T : V — V, there exists a basis of V' such that the matrix M(T)
is block diagonal and each block is a Jordan matrix. O

3.11.9 Problem. Construct all linear operators T : K® — K°® with
minimal polynomial (¢t — 5)? (t — 6)? up to similarity.

Solution. The minimal polynomial of T divides the characteristic
polynomial of T and these polynomials have the same irreducible
factors. Thus, Corollary 3.11.6 implies that K° is isomorphic to one
of the following:

KIt] K[t] Klt]
((t=5)2) ® ((t—6)2) ® ((t—6)2)
K[t] K[t] K[t] K[t]
-2 @ wmom) @ 1oy © o)
K|[t] K[t] K[t] K|[t]
((t=5)2) © (t-5) © ((t—6)2) (t—6)
Kl g Kl g K[ o KI1
((t=5)2) (t-5) (t-5) ((t—6)2)
K[t] K[t] ® K[t] m

((t=5)2) ~ ((t=5)2) ~ ((t—6)2) "



