4
Category Theory

Category theory provides a language for mathematics, designed to
capture general phenomena and enable the transfer of ideas. This
approach supplies simplifying abstraction, isolating those results
that hold for formal reasons from those that require methods from a
particular branch of mathematics. Category theory also formulates
new proof techniques.

4.0 Mathematical Analogies

Category theory emphasizes the maps between objects. From this
perspective, mathematical structures are defined or described by
diagrams of arrows. Each arrow f: X — Y represents a map or
function. A typical diagram

x 1 .y

|
zZ
is commutative when g = ho f. The same diagram applies in many
contexts: sets and functions, topological spaces and continuous
maps, groups and homomorphisms, etc.

Many structural properties may be viewed as universal features
of diagrams. Consider the cartesian product X x Y of two sets X
and Y, which consists of all order pairs (x,y) of elements x € X
and y € Y. The projections (x,y) = x and (x, y) — y of the product
on its factors are the maps p: X XY - Xandq: X XY - Y. Any
map h: W - X x Y is uniquely determined by p o h and q o h.

w
AN

Conversely, given two functions f: W — X and g: W — Y, there
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exists a unique function h: W — X x Y which makes the diagram
commute: h(w) = (f(w), g(w)). Thus, given the sets X and Y, the
pair (p, q) is “universal” among the functions from some set to X
and Y, because any other such pair (f, g) factors uniquely (via h)
through the pair (p, q). This property describes the cartesian prod-
uct X X Y uniquely (up to a bijection). The same diagram, within
the category of groups or topological spaces, describes the direct
product of groups or the cartesian product of spaces.

The “cartesian product” construction is called a functor because
it applies to sets and the maps between them. Two mapsk: X —» X’
and ¢:Y - Y haveamapkx¢:X XY — X' xY’, defined by
(x,¥) ~ (k(x),¢(y)) as their cartesian product. Observe that the
one-point set pt := {0} serves as an identity under the operations
“cartesian product”, in view of the bijections

ptx X X <J— X X pt.

given by i(0, x) = x and j(x,0) = x.

A monoid M (semigroup with identity) may be described as a set
M together with two maps u: M XM — M and 7: pt - M such
that the following two diagrams commute:

MxMxM 2% pwm ptx M M M M A xpt
#XidMl lﬂ Ll lu lj
MXM ——— M M M M

To say that these diagrams commute means

po(idy xp) = po(uxidy), po(mxpt)=i, and uo(lxn)=j.

Rewriting these diagrams with elements gives

(x,y,z) —— (x,y2) (0,x) — (e, x) (x,e) «—— (x,0)
(xy,z) —— (xy)z = x(yz) X ex xe X

where 7(0) = e € M. These are the familar axioms: multiplication
is associative and the element e is a left and right identity. The same
process applies to other axioms.

Because the diagrams make no mention of elements, they apply
in other circumstances. When applied to topological spaces and
continuous maps, they define topological groups. For differentiable
manifolds and smooth maps, they define a Lie group.



4.1 Categories

A category is a context for studying a class of mathematical objects.
Importantly, a category has both ‘nouns’ and ‘verbs’ with specified
collections of objects and maps between them.

4.1.1 Definition. A category C consists of

« acollection of objects X, Y, Z, ...

« acollection of morphisms f, g, h,...

such that:

« Every morphism has a specified source and target objects. The
morphism f with source X to target Y is denoted by f: X - Y.

« Each object X has a designated identity morphismidy : X — X.

+ For any pair of morphisms f, g such that the target of f is equal
to the source of g, there exists a specified composite morphism g f
whose source is equal to the source of f and whose target is equal
to the target of g.

This data satisfies the following two axioms:

« Forany f: X - Y,wehave f idy = f = idy f.

o For any triple f: X - Y, g:Y - Z,and h: Z - W, we have
h(gf)=(hg)f,sothe notation h g f is unambiguous.

4.1.2 Example. The category Set has sets as its objects and maps,
with specified source and target, as its morphisms. <>

4.1.3 Example. The category Grp has groups as objects and group
homomorphisms as morphisms. <>

4.1.4 Example. The category Ab has abelian groups as objects and
group homomorphisms as morphisms. <>

4.1.5 Example. The category CRng has commutative rings as its ob-
jects and ring homomorphisms as its morphisms. <>

4.1.6 Example. For a ring R, the category Modp has R-modules as
objects and R-module homomorphisms as morphisms. Thus, the
category Ab is the same as the category Mod. &>

4.1.7 Example. The category Top has topological spaces as objects
and continuous functions as morphisms. <>

4.1.8 Example. The category Top, has pointed topological spaces
(some point in the space is chosen to be the basepoint) as objects
and basepoint-preserving continuous functions as morphisms. <

4.1.9 Example. The category Htpy has topological spaces as objects
and homotopy classes of continuous maps as morphisms. <

4.1.10 Example. The category Graph has (undirected simple) graphs
as objects and graph morphisms (a pair of maps on vertices and
edges preserving incidence relations) as morphisms. <&

CATEGORY THEORY 91

Copyright © 2020, Gregory G. Smith
Last updated: 2020-11-23

Russell’s paradox implies that there is
no set whose elements are “all sets”.
For this reason, we use the vague
word “collection” in Definition 4.1.1.
The set-theoretical foundations for
category theory are a separate topic.

As in Definition 1.3.3, a morphism
f:X — Yisan isomorphism if there
exists a morphism g: Y — X such
that g f =idx and f g = idy.

Despite downplaying the significance
of the morphisms, it is traditional to
name a category after its objects.
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The first examples are “concrete”
categories—objects have underlying
sets and the morphisms are maps
between the underlying sets. How-
ever, “abstract” categories are also
common.

This duality has a very important in
the development of category theory.
Any theorem containing a universal
quantification of the form “for all
categories C” applies to the opposites
of these categories. Interpreting the
result in the dual context leads to a
dual theorem, in which the direction
of each arrow is reversed.

4.1.11 Example. The category Poset has partially-ordered sets as its
objects and order-perserving maps as its morphisms. <>

4.1.12 Example. For any ring R, the category Mati has nonnegative
integers as objects. For any two nonnegative integers n and m, the
morphisms from 7 to m are (mxn)-matrices with entries in R. Com-
position is by matrix multiplication with identity matrices serving
as the identity morphisms. <>

4.1.13 Example. For any group G, the category BG has a just one
object. Each group element gives a distinct endomorphism of the
single object with composition given by multiplication. The identity
e € G acts as the identity morphism for the unique object. <

4.1.14 Example. Any poset (P, <) forms a category. The elements in
P are the objects and there is a unique morphism x — yif and only if
X < y. Transitivity implies that the required composite morphisms
exists. Reflexivity implies that identity morphisms exist. <

4.1.15 Definition. Let C be a category. The opposite category has the
same objects as C. There is a morphism f°P : X — Y in C°P if there
is a morphism f: Y — Y in C. A pair of morphisms f°P, g°P € C°P
is composable when the pair g, f is composable in C. We define
8°P f°P to be (f g)°.

4.1.16 Definition. A morphism f: X — Y in a category is

« a monomorphismif for any morphisms h: W - Xandk: W — X,
the relation f h = f k implies that h = k, or

« a epimorphismif for any morphismsh:Y - Zandk:Y — Z, the
relation h f = k f implies that h = k,

4117 Lemma. Letf: X — Y andg: Y — Z be morphisms.

(i) Iff and g are monomorphisms, theng f : X — Z also is.

(ii) Ifg f: X — Z is a monomorphism, then f is a monomorphism.
(iii) If f and g are epimorphisms theng f : X — Z also is.

(iv) Ifg f : X — Z is a epimorphism, then g is a epimorphism.

Proof. Consider morphismsh: W - Xand k: W - X.

(i) Since g is monomorphism, the relation g f h = g f k implies
that fh = f k. Since f is also a monomorphism, we deduce
that h = k, so g f is a monomorphism.

(ii) The relation f h = f k impliesthatg fh = g f k. Sinceghisa
monomorphism, we see that h = k, so f is a monomorphism.

(iii) The notions of monomorphism and epimorphism are dual, so
it follows from part (i).
(iv) By duality, this follows from part (ii). O



