4.2 Functoriality

Within category theory, mathematical objects should be considered
together with a suitable notion of structure-preserving morphism.
Categories are themselves mathematical objects. What are their
morphisms?

4.2.1 Definition. A functor F : C — D consists of two assignments:
« for each X in C, an object F(X) in D.

+ foreach f: X - Y in C, a morphism F(f): F(X) - F(Y) in D,
such that

« for each object X in C, we have F(idx) = idp(x), and

+ for any composable pair f, g in C, we have F(g) F(f) = F(g f).

4.2.2 Example. There is a functor P : Set — Set that sends a set X to
its power set P(X) consisting of all subsets of X. This functor sends
map f : X — Y to the direct-image map f, : P(X) - P(Y) defined,
forall X’ c X,by f.(X)={f(x) | xeX'}CY. <&

4.2.3 Example. A forgetful functor is a term used for any functor that
forgets structure. For instance, the functor U : Grp — Set sends a
group to its underlying set and a group homomorphism to its under-
lying map of sets. The functor U : Top — Set sends a space to its set
of points. There are two natural forgetful functors V' : Graph — Set
and E : Graph — Set that send a graph to its vertex and edge sets
respectively. These mappings are functorial because in each case a
morphism in the source category has an underlying map of sets. <

4.2.4 Example. There are functors Modi — Ab and CRng — Ab that
forget some, but not all, of the algebraic structure. The canonical
functors Ab — Grp and Field - CRng may be regarded as forgetful.
The latter two, but neither of the former, are injective on objects: a
group is either abelian or not, but an abelian group might admit the
structure of a ring in multiple ways. <>

4.2.5 Example. The chain rule articulates the functoriality of the
derivative. Let Euclid, be the category whose objects are pointed
finite-dimensional Euclidean spaces (R", a) and whose morphisms
are functions differentiable at a. The total derivative of a function
f:R" - R™, evaluated at a € R", gives rise to the Jacobian matrix.
This defines a functor D : Euclid, — Matg. On objects, D assigns a
pointed Euclidean space its dimensions. For a function g : R" — R*
that is differentiable at f(a) and carries the designated basepoint
fla) e R" to (g f)a) € R*, the functoriality of D is equivalent to
saying that the product of the Jacobian of f at a with the Jacobian of
g at f(a) equals the Jacobian of g f at a. This is the chain rule. <

The functors in Definition 4.2.1 are called covariant to distinguish
them from another type of functor.
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In a locally small category C, it is
traditional to write Hom¢ (X, Y) for
the set of morphisms from X to Y.

4.2.6 Definition. A contravariant functor F from the category C to
the category D is a functor F: C°? — D. Foreach f: X —» Y inC,
there is a morphism F(f) : F(Y) —» F(X) inD.

4.2.7 Example. The contravariant functor P : Set® — Set sends a
set X to its power set P(A) and a map f: X — Y of sets to the
inverse-image map f~!: P(Y) — P(X) defined, for all Y’ C Y, by
Y ={xeX|f(x)eY}CX. <&

4.2.8 Example. There is functor (—)* : Vecty — Vectg that carries
a K-vector space V to its dual space V* := Hom(V,K). A vector in
I*is alinear functional on V. This functor is contravariant because
the linear map ¢ : V' — W is sent to the linear map ¢*: W* —» V*
that pre-composes a linear functional w : W — K with ¢ to obtain
the linear functional (w ) : V — K. <&

4.2.9 Example. The functor O : Top’® — Poset that carries a space
X to its poset O(X) of open subsets is contravariant. A continuous
map f: X — Y gives rise to a function f~!: O(Y) - O(X) that
sends an open subset U C Y to its preimage f~1(U). <&

4.2.10 Lemma. Functors preserve isomorphisms

Proof. Let f: X — Y be an isomorphism in a category C and let
g:Y - X beits inverse. For any F : C - D, functoriality implies
that F(g) F(f) = F(gf) = F(idx) = idp). By symmetry, we see
that F(g): F(Y) — F(X) is the inverse of F(f): F(X) - F(Y). O

4.2.11 Example. For any group G, let BG be its one-object category.
A functor X : BG — C specifies an object X in C and a morphism
g.:X - X for each g € G. Two conditions hold:

« Forallg,h € G,wehaveh, g, = (hg)..

« For the identity element e € G, we have e, = idy.

The functor BG — C defines an action of the group G on the object
X in C. When C = Set, the object X is endowed with a group action.
When C = Vectg, the object X is a representation of G. Because the
elements g € G are isomorphisms in BG, their images under any
functor must also be isomorphisms in the target category. <&

4.2.12 Example. A category is locally small if between any pair of
objects there is only a set’s worth of morphisms. The category CAT
haslocally small categories as objects and functors between then as
morphisms. The categories Set, Grp, Poset are objects in CAT. The
functor (—)°P : CAT — CAT defines a non-trivial automorphism of
the category of categories. <



4.3 Naturality

Categories and functors were first conceived as auxiliary concepts
needed to give a precise meaning to the concept of naturality.

4.3.1 Definition. Let F: C - Dand G : C — D be functors. A natural
transformation« : F = G consists of amorphism ay : F(X) - G(X)
in D for each object X in C such that, for any morphism f: X - Y
in C, the following square in D

F(X) -2 F(X)

F( f)l lG(f )

commutes.

4.3.2 Example. There is natural transformation 7 : idge = P from
the identity to the covariant power set functor where 9y : X - P(X)
sends x € X to the singleton {x} € P(X). <&

4.3.3 Example. For any K-vector space VV, the map ev: V — VV*
thatsends avector v € V to the linear function ev, : V* — K defines
a natural transformation from the identity functor on Vectg to the
double dual functor. To check that, for any linear map ¢ : V - W,

the natural square
1% ev |

W ev W**

commutes, it suffices to consider a generic vector v € V. The map
eVy) | W* — K carries a linear functional f: W — K to f(p(v)).
Example 4.2.8 shows that the morphism sends ¢**(ev,): W* - K
carries a linear function f : W* — K to f(¢(v)). 3

A familiar isomorphism arising from the classification of finitely
generated abelian groups is not natural.

4.3.4 Proposition. Let G be a finitely generated abelian group and let
7(G) be its torsion subgroup. The isomorphism G = 7(G) & (G/7(G)) is
not natural.

Proof. Suppose that the isomorphism G = 7(G) @ (G/7(G)) were
natural in G. The composite G - G/7(G) - ©(G)®(G/7(G)) = G of
the canonical quotient map, the canonical inclusion map, and this
isomorphism would define a natural transformation on the identity
functor on Ab'®. We claim that this is impossible.

We first show that any natural transformation « : id apfe > 1t
is multiplication by some integer n. A homomorphism ¢:7Z —» G
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In practice, a natural transformation
is defined by saying “the morphisms
x are natural” which means that the
collection defines a natural tranfor-
mation. Although the correct choice
of the source and target functors and
the course and target categories may
be implicit, the naturality condition
refers to every object and every mor-
phism in the source category and is
described using the images in the
target category under the action of
both functors.

The identity functor and the single
dual functor on finite-dimensional
vectors spaces are not naturally
isomorphic. One obstruction is
technical: the identify functor is
covariant while the dual functor is
contravariant. The essential failure
of naturality is more significant. The
isomorphisms between a vector space
and its dual require a choice of basis,
which is perserved by no non-identity
linear transformations.
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As the nomenclature suggests, the
notion of equivalent categories
defines an equivalence relation.

The proof of Theorem 4.3.7 involves
a lengthy diagram chase. The second
part uses the axiom of choice.

of abelian groups is determined by the image g := (1) € G. Thus,
the commutativity of the diagram

7z 2,7

o

G—— G
ac

forces ag(g) = ng.

From the case G = Z, it follows that the natural transformation
defined by G — G/7(G) — 7(G) & (G/7(G)) = G is multiplication by
a nonzero integer n. Consider G = Z/(2n). This is a torsion group,
so any map, such as az,,,, which factors through the quotient, is
zero. However, we have n # 0 € Z/(2n) whichin a contradiction. O

Natural isomorphisms lead to the equivalence of categories.

4.3.5 Definition. An equivalence of categories consists of functors
F:C - D, G:D — C and natural isomorphisms 7 : id¢ =,GF and
€: idp Z,FG. The categories C and D are equivalent, written C ~ D,
if there exists an equivalence between them.

There is a useful characterization of the functors in an equiva-
lence of categories. Its statement requires new terminology.

4.3.6 Definition. A functor f:C —» Dis

« fullif, for any pair X, Y of objects in the category C, the morphism
map Home(X, Y) - Homp(F(X), F(Y)) is surjective.

« faithful if, for any pair X, Y of objects in the category C, the map
Hom¢(X,Y) - Homp(F(X), F(Y)) is injective, and

« essentially surjective on objects if, for every object Z in the category
D, there exists an object X in C such that Z is isomorphic to F(X).

4.3.7 Theorem. A functor defining an equivalence of categories is full,
faithful, and essentially surjective on objects. Moreover, any functor with
these properties defines an equivalence of categories. ]

4.3.8 Example. For any field K, the categories Matg and Vectﬁé1 are
equivalent. Consider an intermediate category Vect'}}S whose objets
are finite-dimensional vector spaces with a chosen basis and whose
morphisms are arbitrary linear maps. These three categories are
related by four functors: U : Vect}'}s - Vectfréi is the forgetful functor.
The functor K= : Maty — Vect}){S sends n to the vector space K",
equipped with the standard basis. An (m x n)-matrix, relative to the
standard bases on K" and K™, defines a linear map K" — K™. The
functor H : Vect‘f{S — Maty carries a vector space to its dimension
and a linear map ¢ : IV — W to the matrix relative to the chosen
bases. The functor C': Vectﬁé1 - Vect]f}S is defined by choosing a basis
for each vector space. One verifies that functors are full, faithful,
and essentially surjective on objects. <&



