4.4 Representable Functors

A foundational lemma in category theory demonstrates that every
object can be characterized by a universal property.

4.4.1 Definition. Let F be covariant or contravariant functor from
a locally small category C to Set. A representation of the functor F
is a choice of object X in C together with a natural isomorphism
Hom¢(X, —) = F when F is covariant, or Hom¢(—, X) =~ F when F
is contravariant. One says that F is represented by X. A functor is
representable if there exists a representation.

4.4.2 Example. The identity idg : Set — Set is represented by the
singleton set {@}. For any set X, there exists a natural isomorphism
Homg,({@}, X) =~ X that defines a bijection between the elements
X € X and maps x: {@} — X carrying the singleton element to x.
Naturality says that, for any f : X — Y, the diagram

Homg ({2}, X) ——— X

1. l lf

Homgy ({0}, Y) —— Y

commutes. The composite function {&} X L Y corresponds to
the element f(x). &

4.4.3 Example. The forgetful functor U : Top — Set is represented
by the singleton space. There is a natural bijection between ele-
ments of a topological space and continuous functions from the
one-point space. <>

4.4.4 Example. The forgetful functor U : Grp — Set is represented
by the group Z. For any group G, there is a natural isomorphism
Homg,(Z, G) = U(G) that associates, to every element g € U(G),
the unique group homomorphism Z — G that maps the integer 1
to g. This defines a bijection because every group homomorphism
Z — G is determined by the image of 1. In other words, Z is the free
group on a single generator. This bijection is natural because the

composite group homomorphism Z £, 6 2 H carries the integer
1to p(g) € H. <&

4.4.5 Example. For any commutative ring R, the forgetful functor
U : Mody — Set is represented by the R-module R!. There exists a
natural bijection between R-module homomorphisms R — V' and
the elements of the underlying set of V; v € U(V) is associated to
the unique R-module homomorphism that carries the multiplica-
tive identity of R to v. In other words, R is the free R-module on a
single generator. <>
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Certain classes of universal properties
define blueprints which specify how

a new object may be build out of a
collection of existing ones.

A universal property of an object X
in the locally small category C is a
description of the covariant functor
Hom¢(X, —) or the contravariant
functor Homg(—, X).
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The adjective “free” is reserved for
universal properties expressed by
covariant represented functors.

4.4.6 Example. The functor U : CRng — Set is represented by the
ring Z[x]. A ring homomorphism Z[x] — R is uniquely determined
by the image of x. In other words, Z[x] is the free commutative ring
on a single generator. <>

4.47 Example. For any n € N, the functor U(—)" : Grp — Set that
sends a group G to the set of n-tuples of elements of G is repre-
sented by the free group on n generators. For any commutative
ring R, the functor U(—)": Mody — Set is represented by the free
R-module R". The functor U(—)": CRng — Set is represented by
the polynomial algebra Z[x,, x,, ..., X,]. <>

4.4.8 Example. The functor (—)*: CRng — Set that sends a ring
to its set of units is represented by the Laurent polynomial ring
Z[x,x']. A ring homomorphism Z[x,x~!] — R may be defined
by sending x to any unit of R and is completely determined by this
assignment. No ring homomorphism carries x to a non-unit. <>

4.4.9 Example. The contravariant power set functor P : Set’” — Set
is represented by the set Q := {0, 1} with two elements. The natural
isomorphism Homg (X, Q) = P(A) is defined by the bijection that
associates a map X — Q with the subset that is the preimage of 1.
Reversing perspectives, a subset X’ C X is identify with its indicator
function yx : X — Q which sends exactly the elements of X’ to 1.
The naturality condition stipulates that, foranymap f : X — Y, the

diagram N
Homge (Y, Q) —— P(X)

S

Homge (X, Q) - P(Y)
commutes. Given an indicator function yys : Y — Q, the composite

function X AN Y 2, Q determines the subset fFy)cXx. <

4.4.10 Example. For any field K, the functor U(-)* : Vecty’ — Vectg
that sends a vector space to the set of vectors in its dual space is
represented by the vector space K; linear functionals V' — K are, by
definition, precisely the vectors in the dual space V*. <

4.4.11 Example. For any two set Y and Z, the functor
Hom(— x Y, Z): Set’™® — Set

that sends a set X to the set of functions X X Y — Z is represented
by the set ZY of functions from Y to Z. Hence, there exists a natural
bijection between functions X x Y — Z and functions X — ZY. This
natural isomorphism is referred to as currying in computer science.
By fixing a variable in a two-variable function, one obtains a family
of functions in a single variable. <&



45 The Yoneda Lemma

The previous section suggests that a representation encodes some
sort of universal property of its representing object. If two objects
represent the same functor, are they isomorphic?

4.5.1 Definition. For any categories C and D, the functor category
DC has the functors F : C — D as the objects and natural transfor-
mations between them as morphisms. Given an object F in DC, its
identity morphism idg : F = F in D€ is the natural transformation
determined by (idp)y := idp(x) for all objects X in C. To describe
composition in D€, consider three parallel functors E,F,G: C — D
and two natural transformations a¢: E = F and 8: F = G. The
composite natural transformation S o : E = G is determined, for
all objects X in C, by (8 a)x := Bx atx. Naturality of o and 8 implies
that, for any morphism f : X —» Y in C, each square in the diagram

E(X) —2, F(X) -2 6(X)
E(f) l F(f) l lG(f)
E(Y) - F(Y) -2 6(Y)

commutes, so the composite rectangle also commutes. To remains
to verify that composition is associative and unital. It suffices to
verify these properties for all objects X in C. Therefore, they follow
from the associativity and unitality of composition in D.

The next result is arguably the most important result in category
theory. Its takes time to appreciate this deceptively deep statement.

4.5.2 Theorem (Yoneda lemma). LetC be a locally small category. For
any functor F : C — Set and any object X in C, there is a bijection

Homg,c(Hom¢(X, —), F) = F(X)

that associates a natural transformation a : Homg(X, —) = F to the
element ax(idy) € F(X). This bijection is natural in bothX and F. R

A special case of the Yoneda lemma characterizes the natural
transformations between representable functors. Each object X in
the category C represents a functor Hom¢(X, —) : C — Set and each
morphism f: X — Y in C corresponds to a natural transformation
f*: Homg(Y, —) = Hom¢ (X, —) determined, for all objects Z in C,
by the pre-composition map f*: Homg(Y, Z) - Homc(X, Z). This
data determines a functor H~ : C° — Set°.

4.5.3 Corollary (Yoneda embedding). The functor H™ : C°P — Set® is
full and faithful.
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This eponymous lemma was baptized
by Saunders Mac Lane after learning
about it from Nobuo Yoneda in 1954.

The statement of the dual form of the
Yoneda Lemma is left as an exercise.
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The Yoneda lemma is a generalization
of Theorem 1.5.8.

Amap a:Y — X is G-equivariant if,
for all g € G, the diagram

y 25 Xx

g*l lg*

YT)X

commutes.

Proof. By Definition 4.3.6, the functor H~ : C°? — Set® is full and
faithful provided it defines local bijections between hom-sets

Hom¢(X,Y) = Homgec(Home(Y, —), Home(X, —)).

Rhe definition of H~ ensures that this map is injective: distinct
morphism induces distinct natural transformations. The Yoneda
lemma implies that a natural transformation

a: Home(Y, —) = Home(X, —)

corresponds to elements in Hom¢ (X, Y); the morphism f: X - Y
in Cis f = ay(idy). Defined as pre-composition with f: X — Y,
the natural transformation f*: Homg(Y, —) = Homg(X, —) sends
idy to f. Thus, the bijection implies that o = f*. O

4.5.4 Corollary. Every group is isomorphic to a subgroup of a symmetric
group.
Proof. For any group G, Example 4.2.11 establishes that a functor
X : BG — Set corresponds to a set X with an action of G. A natural
transformation a: X = Y consists of a single G-equivariant map
a:Y — X of sets. The G-equivariant maps G — X correspond bi-
jectively to elements of X: identify a map with the image of e € G.
Hence, the image of the Yoneda embedding BG°P? — Set® is the
set G under left translation. Corollary 4.5.3 implies that the only
G-equivariant endomorphisms of G are those defined by right mul-
tiplication with an element of G. In particular, any G-equivariant
endomorphism of G must be an automorphism.

Thus, the Yoneda embedding defines an isomorphism between
G and the automorphism group of the G, regarded as an object in
Set®C. Composing with the faithful forgetful functor Set®® - Set,
we obtain an isomorphism between G and a subgroup of the auto-
morphism group & of the set G. O

4.5.5 Corollary. Let X and Y be objects in a locally small category C. If
the functors represented by X andY are naturally isomorphic, then X and
Y are isomorphic. In particular, if X and Y represent the same functor,
then X and Y are isomorphic.

Sketch of Proof. The full and faithful Yoneda embedding C°P — Set®
creates isomorphisms: for any two objects in the source category,
whose images are isomorphic in the target, are isomorphic in the
source. Thus, an isomorphism between represented functors is in-
duced by a unique isomorphism between their representing objects.
Finally, given a functor represented by both X and Y, the represent-
ing natural isomorphisms compose to demonstrate that X and Y
are representably isomorphic. O



