Queen's Algebraic Geometry — Seminar —

DIOPHANTINE APPROXIMATION CONSTANTS FOR VARIETIES OVER FUNCTION FIELDS

NATHAN GRIEVE University of New Brunswick

Abstract

Let \mathbf{K} be a field of characteristic zero, $\overline{\mathbf{K}}$ an algebraic closure of \mathbf{K} , and let X be a projective variety defined over \mathbf{K} . We define approximation constants, depending on a choice of very ample line bundle L on X and a point $x \in X(\overline{\mathbf{K}})$, extending the theory developed by McKinnon–Roth for the case that \mathbf{K} is a number field. We then use an effective version of Schmidt's subspace theorem applicable to the case that \mathbf{K} is a function field, due to J.T.-Y. Wang, to give a sufficient condition for such approximation constants to be computed on a proper \mathbf{K} -subvariety of X. We also indicate how our approximation constants are related to volume functions and Seshadri constants.

> Monday, 9 November 2015 16:30–17:30 319 Jeffery Hall