Queen's University - Math 844

Problem Set #1

Fall 2022
Posted: Thursday, 22/9/2022
Due: Thursday, 29/9/2022

Note: In all that follows, the space \mathbb{R}^n is endowed with its usual topology.

- 1. Let (X, τ) be a topological space. Consider the product space $X \times X$ with the product topology. Let $\Delta = \{(x, y) \in X \times X | x = y\}$ (the "diagonal" set). Show that X is Hausdorff $\Leftrightarrow \Delta$ is closed in $X \times X$.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ continuous. Show that if $n \geq 2$, then f cannot be injective.
- 3. Let (X, τ) be a topological space, and consider $\{0, 1\}$ with the discrete topology τ_d . Show that (X, τ) is a connected topological space iff $\forall f : (X, \tau) \to (\{0, 1\}, \tau_d)$ we have: f continuous $\Rightarrow f$ constant. Use this to show that $\forall A \subset X$, A connected $\Rightarrow \overline{A}$ connected.
- 4. We defined the circle S^1 as a topological space in two ways:
 - (a) As the quotient of \mathbb{R} by the equivalence relation \sim (with $x \sim y \Leftrightarrow x y \in \mathbb{Z}$) with the quotient topology, and
 - (b) as the subset $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ of \mathbb{R}^2 with the subspace topology induced by the inclusion $S^1 \hookrightarrow \mathbb{R}^2$.

Show that the topological spaces obtained in (a) and (b) are homeomorphic.

- 5. Consider the subset X of \mathbb{R}^2 given by $X = \{(x, y) \in \mathbb{R}^2 | xy = 0\}$, endowed with the subspace topology τ induced by inclusion in \mathbb{R}^2 . Show that there is no open neighborhood of (0, 0) in (X, τ) homeomorphic to an open subset of \mathbb{R}^n (for any $n \in \mathbb{N}$). (As a result, (X, τ) cannot admit any C^0 manifold structure hence no C^k manifold structure for $k \in \mathbb{N} \cup \{\infty\}$).
- 6. Let (X, τ) be a topological space, and let $\{\mathcal{A}_{\alpha}\}_{\alpha}$ be the (possibly empty) set of all C^{∞} atlases on (X, τ) . Show that the relation of C^{∞} compatibility between these atlases is an equivalence relation (each equivalence class being a distinct C^{∞} structure on (X, τ)).
- 7. $\forall n \in \mathbb{N}$, define the unit sphere $S^n = \{\mathbf{x} \in \mathbb{R}^{n+1} | \|\mathbf{x}\| = 1\}$ of \mathbb{R}^{n+1} , and consider it as a topological subspace of \mathbb{R}^{n+1} .
 - (a) Show that S^n is a compact path-connected topological space (use the fact that a subset of \mathbb{R}^k is compact iff it is closed and bounded).
 - (b) Construct a C^{∞} atlas on S^n using stereographic projection (as we did in class for S^1), and show that it is indeed a C^{∞} atlas.
- 8. Let $p, n \in \mathbb{N}^*$ with $p \leq n$, and let $\mathcal{M}_{n,p}$ be the vector space of all real $n \times p$ matrices (with its canonical topology as a finite-dimensional vector space over \mathbb{R}), and let $\hat{\mathcal{M}}_{n,p}$ be the subset of $\mathcal{M}_{n,p}$ consisting of matrices of rank p.
 - (a) Show that $\hat{\mathcal{M}}_{n,p}$ is an open subset of $\mathcal{M}_{n,p}$. We shall consider $\hat{\mathcal{M}}_{n,p}$ as a topological subspace of $\mathcal{M}_{n,p}$.
 - (b) Consider the following relation on $\hat{\mathcal{M}}_{n,p}$: $M_1 \sim M_2 \Leftrightarrow \exists A \in GL(p,\mathbb{R}) : M_1 = M_2A$. Show that \sim is an equivalence relation on $\hat{\mathcal{M}}_{n,p}$. We denote the quotient space $\hat{\mathcal{M}}_{n,p}/\sim$ equipped with the quotient topology by $\mathcal{G}_{n,p}$.
 - (c) We now endow $\mathcal{G}_{n,p}$ with a C^{∞} structure. For each ordered p-tuple $J = (i_1, \dots, i_p)$ of distinct integers $1 \le i_1 < i_2 < \dots < i_p \le n$, and for each $M \in \mathcal{M}_{n,p}$, we denote by M_J the $p \times p$ matrix obtained from M by keeping only rows i_1, i_2, \dots, i_p . We similarly denote by J' the ordered (n-p)-tuple of integers in $\{1, \dots, n\}$ complementary to those of J, and by $M_{J'}$ the $(n-p) \times p$ submatrix of M obtained by keeping only the rows with indices in J'. For each such p-tuple J (note that there are $\frac{n!}{(n-p)!p!}$ such J's in total), we define $V_J = \{[M] \in \mathcal{G}_{n,p} | \det(M_J) \neq 0\}$. Show that V_J is well-defined, and is open in $\mathcal{G}_{n,p}$.
 - (d) For each p-tuple J as in (c), we define the mapping $\phi_J : V_J \to \mathbb{R}^{p(n-p)}$, where $\forall [M] \in V_J$, $\phi_J([M])$ is the p(n-p)-tuple of entries (with respect to some defined order) of the matrix $(M_{J'})(M_J)^{-1}$. Show that for each J (as in (c)) the map ϕ_J is well-defined and is a homeomorphism.
 - (e) Show that the family $\{(V_J, \phi_J)\}_J$ defines a C^{∞} atlas, and hence a C^{∞} structure, on $\mathcal{G}_{n,p}$.

Note:

- (i) $\mathcal{G}_{n,p}$ is called the real Grassmannian manifold of p-dimensional subspaces in \mathbb{R}^n .
- (ii) $\mathcal{G}_{n,1}$ is nothing other than \mathbb{RP}^n .