Queen's University - Math 844

Problem Set #2

Posted: 7/10/2022Due: Tuesday, 20/10/2022 (in class)

Fall 2022

- 1. In this problem, we prove the existence of a C^{∞} partition of unity subordinated to any locally finite open cover on a smooth manifold. Let then M be a \mathbb{C}^{∞} n-manifold, and let $(U_i)_{i \in \mathbb{N}}$ a locally finite open cover of M. In all that follows, B(p; r) denotes the open ball of center $p \in \mathbb{R}^n$ and radius r > 0 in \mathbb{R}^n .
 - (a) Let $a, b \in \mathbb{R}$, with a < b. We define $h_{(a,b)} : \mathbb{R} \to \mathbb{R}$ by $h_{(a,b)}(t) = \exp(-\frac{1}{(t-b)^2} \frac{1}{(t-a)^2})$ for a < t < b, and $h_{(a,b)}(t) = 0$ otherwise. Note that $h_{(a,b)}(t) \ge 0$, $\forall t \in \mathbb{R}$, and $h_{(a,b)}(t) > 0$, $\forall t \in]a, b[$. Show that $h_{(a,b)}$ is C^{∞} on \mathbb{R} .
 - (b) Let $\eta_{(a,b)} : \mathbb{R} \to \mathbb{R}$ be defined by $\eta_{(a,b)}(t) = \frac{\int_{-\infty}^{t} h_{(a,b)}(u)du}{\int_{-\infty}^{\infty} h_{(a,b)}(u)du}$. Show that $\eta_{(a,b)}$ is C^{∞} on \mathbb{R} , $\eta_{(a,b)}(t) = 0$ for $t \le a$, $\eta_{(a,b)}(t) = 1$ for $t \ge b$, $\eta_{(a,b)}(t) \in]0, 1[\forall t \in]a, b[$, and $\eta_{(a,b)}$ is strictly monotonically increasing on]a, b[.
 - (c) Let now $K \subset \Omega \subset \mathbb{R}^n$, with K compact and Ω open. Show that there exists a finite open cover $(B_{(p_i,a_i,b_i)})_{i=1}^N$ of K by open sets such that:

 $\begin{array}{l} - \ 0 < a_i < b_i, \quad \forall i, \\ - \ B_{(p_i, a_i, b_i)} = B(p_i; a_i), \quad \forall i, \\ - \ \overline{B(p_i; b_i)} \subset \Omega, \quad \forall i. \end{array}$

- (d) Continuing with the above, define $g_i : \mathbb{R} \to \mathbb{R}$ for each $i \in \{1, \dots, N\}$ by $g_i(x) = \eta_{(a_i, b_i)}(||x p_i||)$, and define $g : \mathbb{R} \to \mathbb{R}$ by $g = 1 \prod_{i=1}^N g_{p_i, a_i, b_i}$. Show that g is C^{∞} on \mathbb{R}^n , g = 1 on K, and $\operatorname{supp}(g) \subset \Omega$.
- (e) Let now $K \subset \Omega \subset M$, with K compact and Ω open in M. Show, using (d), that there exists $f : M \to \mathbb{R} \ C^{\infty}$ such that f = 1 on K, and $\operatorname{supp}(f) \subset \Omega$.
- (f) Construct a locally finite open cover $(V_j)_j$ of M with each V_j relatively compact, such that $\forall j, \exists i \text{ such that } \overline{V}_j \subset U_i$.
- (g) Let now,

$$J_{0} = \{j \in \mathbb{N} \mid \overline{V}_{j} \subset U_{0}\},$$

$$J_{1} = \{j \in \mathbb{N} \setminus J_{0} \mid \overline{V}_{j} \subset U_{1}\},$$

$$\vdots$$

$$J_{k} = \{j \in \mathbb{N} \setminus (J_{0} \cup J_{1} \cup \dots \cup J_{k-1}) \mid \overline{V}_{j} \subset U_{k}\},$$

$$\vdots$$

Show that $\bigcup_{j=1}^{\infty} J_j = \mathbb{N}$.

(h) $\forall j \in \mathbb{N}$, let $f_j : M \to \mathbb{R} \ C^{\infty}$ with $f_j = 1$ on \overline{V}_j and $\operatorname{supp}(f_j) \subset U_i$ (the existence of which was proved in (e)), where *i* is the unique integer for which $\overline{V}_j \subset U_i$. Define $\forall i \in \mathbb{N}$:

$$\mu_i = \frac{\sum_{j \in J_i} f_j}{\sum_i \sum_{j \in J_i} f_j}$$

Show that $(\mu_i)_{i \in \mathbb{N}}$ is a C^{∞} partition of unity on M subordinated to the open cover $(U_i)_{i \in \mathbb{N}}$ of M.

- 2. Let M be a C^{∞} manifold of dimension m, and let (U, ϕ) be a local chart around $p \in M$. Let V be an open subset of $\phi(U) \subset \mathbb{R}^m$, and let h be a diffeomorphism of V onto some open subset of \mathbb{R}^m . Show that $(\phi^{-1}(V), h \circ \phi))$ is a chart for the C^{∞} structure of M.
- 3. Find $f: \mathbb{R} \to \mathbb{R}^2 \ C^{\infty}$ such that $f(\mathbb{R}) = \{(x, y) \in \mathbb{R}^2 | \sup(|x|, |y|) = 1\}$. Can f be an immersion?
- 4. Let $n \in \mathbb{N}^*$, and let $f: S^n \to \mathbb{R}^n$ be a C^{∞} map. Show that f can be neither an immersion nor a submersion.
- 5. Let $p \in \mathbb{N}^*$; construct a local diffeomorphism $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ such that the pre-image of any point in $\mathbb{R}^2 \setminus \{0\}$ has p distinct points (Hint: Consider first a suitable holomorphic function $\mathbb{C}^* \to \mathbb{C}^*$...).
- 6. Find a C^{∞} mapping $f: M \to N$ such that:
 - (a) f is injective but not an immersion.
 - (b) f is an immersion but not injective.
 - (c) f is surjective but not a submersion.
 - (d) f is a submersion but not surjective.