Queen's University - Math 844

Problem Set #3

Fall 2022 Posted: Wednesday, 26/10/2022 Due: Tuesday, 1/11/2022

- 1. Let X be a set, and let $(X_{\alpha})_{\alpha \in \Lambda}$ be a family of subsets of X with $X = \bigcup_{\alpha} X_{\alpha}$; assume $\forall \alpha \in \Lambda$ a topology τ_{α} is defined on X_{α} . Let τ be the set of all subsets $V \subset X$ for which $V \cap X_{\alpha} \in \tau_{\alpha} \ \forall \alpha$.
 - (i) Show that τ is a topology on X.
 - (ii) Give a necessary and sufficient condition for X_{α} to be open in $(X, \tau) \forall \alpha$.
 - (iii) Let M be a C^{∞} n-manifold, and let $\{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} atlas on M; For each α , we endowed $\coprod_{q \in U_{\alpha}} T_q M$ with the unique topology which made the bijection $\Phi_{\alpha} : \coprod_{q \in U_{\alpha}} T_q M \to U_{\alpha} \times \mathbb{R}^n$ a homeomorphism, and we then endowed $TM = \coprod_{q \in M} T_q M$ with the topology induced from the topologies in the $\coprod_{q \in U_{\alpha}} T_q M$, as in (i) above. Show that in this construction, the condition obtained in (ii) is satisfied, and hence each subset $\coprod_{q \in U_{\alpha}} T_q M$ is open in TM.
- 2. Let X, Y, Z be C^{∞} manifolds; assume X is a submanifold of Y and Y a submanifold of Z. Show then that X is a submanifold of Z.
- 3. Let $n \in \mathbb{N}^*$, and consider S^n , the unit sphere of \mathbb{R}^{n+1} , with its usual topology (i.e. the one induced from \mathbb{R}^{n+1} by inclusion). We constructed two C^{∞} structures on S^n : (i) using stereographic projections, and (ii) defining S^n as the preimage of 1 under the constant rank map $\mathbf{x} \mapsto ||\mathbf{x}||$, which immediately established S^n as a submanifold of $\mathbb{R}^{n+1} \setminus \{0\}$, and hence, of \mathbb{R}^{n+1} (as follows from Problem (2) above). Prove that these two C^{∞} structures are identical.
- 4. A Lie group G is a group (G, \cdot) together with a C^{∞} manifold structure such that the group "multiplication" $m : G \times G \to G$, $(x, y) \mapsto m(x, y) = x \cdot y$ and the group inversion operation $i : G \to G$, $x \mapsto i(x) = x^{-1}$ are C^{∞} maps (i.e. the group structure is "compatible" with the C^{∞} structure).

 $\forall a \in G$, we define the maps $L_a : G \to G$, $x \mapsto L_a(x) = a \cdot x$ ("left-translation by a") and $R_a : G \to G$, $x \mapsto R_a(x) = x \cdot a$ ("right-translation by a").

If G_1, G_2 are two Lie groups, we say a mapping $u: G_1 \to G_2$ is a Lie group homomorphism if it is both a group homomorphism and C^{∞} .

- (a) Let H be a subgroup of G such that H is also a submanifold of G. Show that H is then a Lie group for the group structure and manifold structure induced by G (H is called a "Lie subgroup" of G).
- (b) Show that $\forall x, y \in G, T_y L_x : T_y G \to T_{xy} G$ is a vector space isomorphism.
- (c) Let G_1, G_2 be Lie groups. Deduce from (b) that every Lie group homomorphism $u: G_1 \to G_2$ has constant rank.
- (d) Deduce from (c) (with the same notation) that ker(u) is a Lie subgroup of G_1 .
- (e) Show that $\forall n \geq 1$, $GL(n, \mathbb{R})$, with the usual group structure (the group operation being given by matrix multiplication) and the canonical C^{∞} manifold structure (as an open subset of the vector space of real $n \times n$ matrices) is a Lie group.
- (f) Show that $SL(n,\mathbb{R})$, defined as the set of all matrices in $GL(n,\mathbb{R})$ with determinant 1, is a Lie subgroup of $GL(n,\mathbb{R})$.
- (g) Let e denote the identity element of $GL(n, \mathbb{R})$ (i.e. the $n \times n$ identity matrix). Show that $T_eGL(n, \mathbb{R})$ can be canonically identified with the vector space $M_n(\mathbb{R})$ of real $n \times n$ matrices.