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1. Let M be a C∞ n−manifold, (U, φ = (x1, · · · , xn)) and (U,ψ = (y1, · · · , yn)) two local charts on M (with same domain U),
and X a C∞ vector field on M . We can write X|U =

∑n
i=1 a

i ∂
∂xi

=
∑n
i=1 b

i ∂
∂yi

, where the ai and bi are uniquely defined C∞

functions on U ; find the relation between the ai and the bi.

2. Let M be a C∞ manifold of dimension 2, and let X1, X2 be C∞ vector fields on M . Let p ∈ M , and let (U, φ = (x1, x2)) be a
local coordinate chart of M around p. Assume X1 = ∂

∂x1
, X2 = xl1

∂
∂x2

in U , where l ∈ N. Let k ∈ N with k 6= l; show that there

exists no local chart (V, ψ = (y1, y2)) of M around p such that X1 = ∂
∂y1

, X2 = yk1
∂
∂y2

in V .

3. Consider the following C∞ vector fields on R3 (with the global canonical coordinate chart (R3, φ = (x, y, z)): X1 = x ∂
∂y

,

X2 = y ∂
∂z

, X3 = z ∂
∂x

, Y1 = x2 ∂
∂y

, Y2 = y2 ∂
∂z

, Y3 = z2 ∂
∂x

. Show that there is no local diffeomorphism f of R3 for which
Yk = f?(Xk) ∀k ∈ {1, 2, 3}.

4. Let G be a Lie group (with identity element e), M a C∞ manifold. A (smooth, left) action of G on M is a C∞ mapping
a : G ×M → M such that a(e, p) = p and a(s, a(t, p)) = a(st, p) ∀p ∈ M and ∀s, t ∈ G. We shall write s · p instead of a(s, p).
Let now p ∈M and let Sp = {s ∈ G | s · p = p} be the stabilizer of p in G. Show that Sp is a Lie subgroup of G.

5. Let G be a Lie group, M a C∞ manifold, and assume given a (smooth, left) action (s, p) 7→ s · p of G on M . Consider the
relation ∼ given on M by p ∼ q ⇔ ∃s ∈ G : p = s · q; it is easy to verify that ∼ is an equivalence relation on M . We denote the
quotient set M/ ∼ by M/G instead. Let π : M →M/G denote the quotient map.

• Show that π is an open mapping.

• Show that M/G is second countable.

• Let R = {(p, q) ∈M ×M | p ∼ q}; show that M/G is Hausdorff if and only if R is closed in M ×M .

6. Let G be a Lie group of dimension n; show that the tangent bundle TG of G is trivial, i.e. there exists a diffeomorphism
φ : TG → G × Rn such that pr1 ◦ φ = π, where pr1 : G × Rn → G is the projection on the first factor and π : TG → G is the
canonical surjection, and such that ∀g ∈ G, the mapping φ|π−1(g) : π−1(g)→ {g} × Rn is a vector space isomorphism. (NOTE:

We will prove later that TS2 is not trivial; this implies that S2 cannot admit a Lie group structure, i.e. a group structure
compatible with its smooth structure).

7. Let n ∈ N, n ≥ 2, and consider the canonical inclusion i : Sn−1 ↪→ Rn. ∀p ∈ Sn−1, we define the vector subspace p⊥ of Rn by:

p⊥ = {v ∈ Rn | 〈p, v〉 = 0},

where 〈·, ·〉 denotes the Euclidean inner product in Rn.

(a) Define a canonical vector space isomorphism between Tpi(TpS
n−1) and p⊥ for all p ∈ Sn−1.

(b) Let U ⊂ Rn open, with Sn−1 ⊂ U ; show that if v : U → Rn is a nowhere vanishing C∞ vector field on U with v(p) ∈ p⊥
∀p ∈ Sn−1, then there exists a C∞ vector field w on Sn−1 with Tpi(w(p)) = v(p) and w(p) 6= 0 ∀p ∈ Sn−1.

(c) Let (ei)
n
i=1 be the canonical basis of Rn, and let B : Rn × Rn → Rn be a bilinear mapping on Rn with no zero divisor

(i.e. x, y 6= 0 ⇒ B(x, y) 6= 0). Consider the vector space isomorphism α1 : Rn → Rn given by α1(x) = B(x, e1), ∀x ∈ Rn,
and, ∀i ∈ {1, · · · , n}, consider the vector fields wi : Rn → Rn on Rn defined by wi(x) = B(α−1

1 (x), ei), ∀x ∈ Rn, and,
∀i ∈ {1, · · · , n}, define the vector fields vi : Rn \ {0} → Rn on Rn \ {0} by:

vi(x) = wi(x)− 〈wi(x),
x

‖x‖〉
x

‖x‖ , ∀x ∈ Rn \ {0},

where ‖ · ‖ denotes the Euclidean norm on Rn. By studying the vector fields vi, i = 1, · · · , n, deduce that the tangent
bundle TSn−1 of Sn−1 must be trivial.

(d) Deduce from (c) that the tangent bundle TS1 of S1 is trivial (hint: identify R2 with C and define the desired bilinear form
on R2 through complex multiplication in C).

NOTE: It can be proved in the same way that TS3 and TS7 are trivial as well (corresponding to the multiplication of quaternions
in R4 and octonions in R8, respectively). On the other hand, since TS2 is not trivial (to be proved later), there can be no
“multiplication” operation in R3 (with no zero divisor) compatible with the group structure of R3; in particular, the group
structure of R3 cannot be extended to a field structure.
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