Queen's University - Math 844

Problem Set #4

Fall 2022 Posted: Friday, 4/11/2022 Due: Friday, 11/11/2022

- 1. Let M be a C^{∞} n-manifold, $(U, \phi = (x^1, \dots, x^n))$ and $(U, \psi = (y^1, \dots, y^n))$ two local charts on M (with same domain U), and X a C^{∞} vector field on M. We can write $X|_U = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i} = \sum_{i=1}^n b^i \frac{\partial}{\partial y^i}$, where the a^i and b^i are uniquely defined C^{∞} functions on U; find the relation between the a^i and the b^i .
- 2. Let M be a C^{∞} manifold of dimension 2, and let X_1, X_2 be C^{∞} vector fields on M. Let $p \in M$, and let $(U, \phi = (x^1, x^2))$ be a local coordinate chart of M around p. Assume $X_1 = \frac{\partial}{\partial x_1}$, $X_2 = x_1^l \frac{\partial}{\partial x_2}$ in U, where $l \in \mathbb{N}$. Let $k \in \mathbb{N}$ with $k \neq l$; show that there exists no local chart $(V, \psi = (y^1, y^2))$ of M around p such that $X_1 = \frac{\partial}{\partial y_1}, X_2 = y_1^k \frac{\partial}{\partial y_2}$ in V.
- 3. Consider the following C^{∞} vector fields on \mathbb{R}^3 (with the global canonical coordinate chart $(\mathbb{R}^3, \phi = (x, y, z))$: $X_1 = x \frac{\partial}{\partial y}$, $X_2 = y \frac{\partial}{\partial z}$, $X_3 = z \frac{\partial}{\partial x}$, $Y_1 = x^2 \frac{\partial}{\partial y}$, $Y_2 = y^2 \frac{\partial}{\partial z}$, $Y_3 = z^2 \frac{\partial}{\partial x}$. Show that there is no local diffeomorphism f of \mathbb{R}^3 for which $Y_k = f_{\star}(X_k) \ \forall k \in \{1, 2, 3\}.$
- 4. Let G be a Lie group (with identity element e), M a C^{∞} manifold. A (smooth, left) action of G on M is a C^{∞} mapping $a: G \times M \to M$ such that a(e,p) = p and $a(s,a(t,p)) = a(st,p) \forall p \in M$ and $\forall s, t \in G$. We shall write $s \cdot p$ instead of a(s,p). Let now $p \in M$ and let $S_p = \{s \in G \mid s \cdot p = p\}$ be the stabilizer of p in G. Show that S_p is a Lie subgroup of G.
- 5. Let G be a Lie group, M a C^{∞} manifold, and assume given a (smooth, left) action $(s, p) \mapsto s \cdot p$ of G on M. Consider the relation \sim given on M by $p \sim q \iff \exists s \in G : p = s \cdot q$; it is easy to verify that \sim is an equivalence relation on M. We denote the quotient set M/\sim by M/G instead. Let $\pi: M \to M/G$ denote the quotient map.
 - Show that π is an open mapping.
 - Show that M/G is second countable.
 - Let $R = \{(p,q) \in M \times M \mid p \sim q\}$; show that M/G is Hausdorff if and only if R is closed in $M \times M$.
- 6. Let G be a Lie group of dimension n; show that the tangent bundle TG of G is trivial, i.e. there exists a diffeomorphism $\phi: TG \to G \times \mathbb{R}^n$ such that $pr_1 \circ \phi = \pi$, where $pr_1: G \times \mathbb{R}^n \to G$ is the projection on the first factor and $\pi: TG \to G$ is the canonical surjection, and such that $\forall g \in G$, the mapping $\phi|_{\pi^{-1}(g)}: \pi^{-1}(g) \to \{g\} \times \mathbb{R}^n$ is a vector space isomorphism. (NOTE: We will prove later that TS^2 is not trivial; this implies that S^2 cannot admit a Lie group structure, i.e. a group structure compatible with its smooth structure).
- 7. Let $n \in \mathbb{N}$, $n \geq 2$, and consider the canonical inclusion $i: S^{n-1} \hookrightarrow \mathbb{R}^n$. $\forall p \in S^{n-1}$, we define the vector subspace p^{\perp} of \mathbb{R}^n by:

$$p^{\perp} = \{ v \in \mathbb{R}^n \mid \langle p, v \rangle = 0 \},\$$

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n .

- (a) Define a canonical vector space isomorphism between $T_p i(T_p S^{n-1})$ and p^{\perp} for all $p \in S^{n-1}$.
- (b) Let $U \subset \mathbb{R}^n$ open, with $S^{n-1} \subset U$; show that if $v : U \to \mathbb{R}^n$ is a nowhere vanishing C^{∞} vector field on U with $v(p) \in p^{\perp}$ $\forall p \in S^{n-1}$, then there exists a C^{∞} vector field w on S^{n-1} with $T_p i(w(p)) = v(p)$ and $w(p) \neq 0 \ \forall p \in S^{n-1}$.
- (c) Let $(e_i)_{i=1}^n$ be the canonical basis of \mathbb{R}^n , and let $B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a bilinear mapping on \mathbb{R}^n with no zero divisor (i.e. $x, y \neq 0 \Rightarrow B(x, y) \neq 0$). Consider the vector space isomorphism $\alpha_1 : \mathbb{R}^n \to \mathbb{R}^n$ given by $\alpha_1(x) = B(x, e_1), \forall x \in \mathbb{R}^n$, and, $\forall i \in \{1, \dots, n\}$, consider the vector fields $w_i : \mathbb{R}^n \to \mathbb{R}^n$ on \mathbb{R}^n defined by $w_i(x) = B(\alpha_1^{-1}(x), e_i), \forall x \in \mathbb{R}^n$, and, $\forall i \in \{1, \dots, n\}$, define the vector fields $v_i : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$ on $\mathbb{R}^n \setminus \{0\}$ by:

$$w_i(x) = w_i(x) - \langle w_i(x), \frac{x}{\|x\|} \rangle \frac{x}{\|x\|}, \ \forall x \in \mathbb{R}^n \setminus \{0\},$$

where $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^n . By studying the vector fields v_i , $i = 1, \dots, n$, deduce that the tangent bundle TS^{n-1} of S^{n-1} must be trivial.

(d) Deduce from (c) that the tangent bundle TS^1 of S^1 is trivial (hint: identify \mathbb{R}^2 with \mathbb{C} and define the desired bilinear form on \mathbb{R}^2 through complex multiplication in \mathbb{C}).

NOTE: It can be proved in the same way that TS^3 and TS^7 are trivial as well (corresponding to the multiplication of quaternions in \mathbb{R}^4 and octonions in \mathbb{R}^8 , respectively). On the other hand, since TS^2 is not trivial (to be proved later), there can be no "multiplication" operation in \mathbb{R}^3 (with no zero divisor) compatible with the group structure of \mathbb{R}^3 ; in particular, the group structure of \mathbb{R}^3 cannot be extended to a field structure.