1. Let M be a $C^{\infty} n$-manifold, $\left(U, \phi=\left(x^{1}, \cdots, x^{n}\right)\right)$ and $\left(U, \psi=\left(y^{1}, \cdots, y^{n}\right)\right)$ two local charts on M (with same domain U), and X a C^{∞} vector field on M. We can write $\left.X\right|_{U}=\sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}=\sum_{i=1}^{n} b^{i} \frac{\partial}{\partial y^{i}}$, where the a^{i} and b^{i} are uniquely defined C^{∞} functions on U; find the relation between the a^{i} and the b^{i}.
2. Let M be a C^{∞} manifold of dimension 2, and let X_{1}, X_{2} be C^{∞} vector fields on M. Let $p \in M$, and let $\left(U, \phi=\left(x^{1}, x^{2}\right)\right.$) be a local coordinate chart of M around p. Assume $X_{1}=\frac{\partial}{\partial x_{1}}, X_{2}=x_{1}^{l} \frac{\partial}{\partial x_{2}}$ in U, where $l \in \mathbb{N}$. Let $k \in \mathbb{N}$ with $k \neq l$; show that there exists no local chart $\left(V, \psi=\left(y^{1}, y^{2}\right)\right)$ of M around p such that $X_{1}=\frac{\partial}{\partial y_{1}}, X_{2}=y_{1}^{k} \frac{\partial}{\partial y_{2}}$ in V.
3. Consider the following C^{∞} vector fields on \mathbb{R}^{3} (with the global canonical coordinate chart $\left(\mathbb{R}^{3}, \phi=(x, y, z)\right.$): $X_{1}=x \frac{\partial}{\partial y}$, $X_{2}=y \frac{\partial}{\partial z}, X_{3}=z \frac{\partial}{\partial x}, Y_{1}=x^{2} \frac{\partial}{\partial y}, Y_{2}=y^{2} \frac{\partial}{\partial z}, Y_{3}=z^{2} \frac{\partial}{\partial x}$. Show that there is no local diffeomorphism f of \mathbb{R}^{3} for which $Y_{k}=f_{\star}\left(X_{k}\right) \forall k \in\{1,2,3\}$.
4. Let G be a Lie group (with identity element e), M a C^{∞} manifold. A (smooth, left) action of G on M is a C^{∞} mapping $a: G \times M \rightarrow M$ such that $a(e, p)=p$ and $a(s, a(t, p))=a(s t, p) \forall p \in M$ and $\forall s, t \in G$. We shall write $s \cdot p$ instead of $a(s, p)$. Let now $p \in M$ and let $S_{p}=\{s \in G \mid s \cdot p=p\}$ be the stabilizer of p in G. Show that S_{p} is a Lie subgroup of G.
5. Let G be a Lie group, M a C^{∞} manifold, and assume given a (smooth, left) action $(s, p) \mapsto s \cdot p$ of G on M. Consider the relation \sim given on M by $p \sim q \Leftrightarrow \exists s \in G: p=s \cdot q$; it is easy to verify that \sim is an equivalence relation on M. We denote the quotient set M / \sim by M / G instead. Let $\pi: M \rightarrow M / G$ denote the quotient map.

- Show that π is an open mapping.
- Show that M / G is second countable.
- Let $R=\{(p, q) \in M \times M \mid p \sim q\}$; show that M / G is Hausdorff if and only if R is closed in $M \times M$.

6. Let G be a Lie group of dimension n; show that the tangent bundle $T G$ of G is trivial, i.e. there exists a diffeomorphism $\phi: T G \rightarrow G \times \mathbb{R}^{n}$ such that $p r_{1} \circ \phi=\pi$, where $p r_{1}: G \times \mathbb{R}^{n} \rightarrow G$ is the projection on the first factor and $\pi: T G \rightarrow G$ is the canonical surjection, and such that $\forall g \in G$, the mapping $\left.\phi\right|_{\pi^{-1}(g)}: \pi^{-1}(g) \rightarrow\{g\} \times \mathbb{R}^{n}$ is a vector space isomorphism. (NOTE: We will prove later that $T S^{2}$ is not trivial; this implies that S^{2} cannot admit a Lie group structure, i.e. a group structure compatible with its smooth structure).
7. Let $n \in \mathbb{N}, n \geq 2$, and consider the canonical inclusion $i: S^{n-1} \hookrightarrow \mathbb{R}^{n} . \forall p \in S^{n-1}$, we define the vector subspace p^{\perp} of \mathbb{R}^{n} by:

$$
p^{\perp}=\left\{v \in \mathbb{R}^{n} \mid\langle p, v\rangle=0\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
(a) Define a canonical vector space isomorphism between $T_{p} i\left(T_{p} S^{n-1}\right)$ and p^{\perp} for all $p \in S^{n-1}$.
(b) Let $U \subset \mathbb{R}^{n}$ open, with $S^{n-1} \subset U$; show that if $v: U \rightarrow \mathbb{R}^{n}$ is a nowhere vanishing C^{∞} vector field on U with $v(p) \in p^{\perp}$ $\forall p \in S^{n-1}$, then there exists a C^{∞} vector field w on S^{n-1} with $T_{p} i(w(p))=v(p)$ and $w(p) \neq 0 \forall p \in S^{n-1}$.
(c) Let $\left(e_{i}\right)_{i=1}^{n}$ be the canonical basis of \mathbb{R}^{n}, and let $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a bilinear mapping on \mathbb{R}^{n} with no zero divisor (i.e. $x, y \neq 0 \Rightarrow B(x, y) \neq 0$). Consider the vector space isomorphism $\alpha_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\alpha_{1}(x)=B\left(x, e_{1}\right), \forall x \in \mathbb{R}^{n}$, and, $\forall i \in\{1, \cdots, n\}$, consider the vector fields $w_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ on \mathbb{R}^{n} defined by $w_{i}(x)=B\left(\alpha_{1}^{-1}(x), e_{i}\right), \forall x \in \mathbb{R}^{n}$, and, $\forall i \in\{1, \cdots, n\}$, define the vector fields $v_{i}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n}$ on $\mathbb{R}^{n} \backslash\{0\}$ by:

$$
v_{i}(x)=w_{i}(x)-\left\langle w_{i}(x), \frac{x}{\|x\|}\right\rangle \frac{x}{\|x\|}, \forall x \in \mathbb{R}^{n} \backslash\{0\}
$$

where $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^{n}. By studying the vector fields $v_{i}, i=1, \cdots, n$, deduce that the tangent bundle $T S^{n-1}$ of S^{n-1} must be trivial.
(d) Deduce from (c) that the tangent bundle $T S^{1}$ of S^{1} is trivial (hint: identify \mathbb{R}^{2} with \mathbb{C} and define the desired bilinear form on \mathbb{R}^{2} through complex multiplication in \mathbb{C}).

NOTE: It can be proved in the same way that $T S^{3}$ and $T S^{7}$ are trivial as well (corresponding to the multiplication of quaternions in \mathbb{R}^{4} and octonions in \mathbb{R}^{8}, respectively). On the other hand, since $T S^{2}$ is not trivial (to be proved later), there can be no "multiplication" operation in \mathbb{R}^{3} (with no zero divisor) compatible with the group structure of \mathbb{R}^{3}; in particular, the group structure of \mathbb{R}^{3} cannot be extended to a field structure.

