Queen's University - Math 844

Problem Set #5

Fall 2022 Posted: Tuesday, 22/11/2022 Due: Tuesday, 29/11/2022

1. Let M be a C^{∞} n-manifold, and let $\omega_1, \dots, \omega_k \in \Omega^1(M)$. Assume that $\forall p \in M, (\omega_1(p), \dots, \omega_k(p))$ is a linearly independent family of T_p^*M . For each $p \in M$, define the subspace Δ_p of T_pM by:

$$\Delta_p = \bigcap_{i=1}^k \ker(\omega_i(p)).$$

- (a) Show that the assignment $p \mapsto \Delta_p$ defines a C^{∞} distribution Δ of rank n k on M.
- (b) Show that: Δ involutive $\Leftrightarrow d\omega^i \equiv 0 \mod \omega^1, \cdots, \omega^k, \forall i \in \{1, \cdots, k\}$ (i.e. for each i, for each $p \in M$, there exist C^{∞} 1-forms $\eta_1^i, \cdots, \eta_k^i$ defined in some open neighborhood U of p such that $d\omega^i = \sum_{j=1}^k \eta_j^i \wedge \omega^j$ in U.)
- 2. Let M be a C^{∞} manifold and let $\omega \in \Omega^k(M)$ $(k \ge 1)$. We wish to show that $d\omega : \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to C^{\infty}(M)$ is alternating and $C^{\infty}(M)$ -multilinear (and hence defines an element of $\Omega^{k+1}(M)$). Recall that $\mathcal{X}(M)$ denotes the $C^{\infty}(M)$ -module of C^{∞} vector fields on M, and that for any C^{∞} vector fields $X_1, X_2, \ldots, X_{k+1}$ on M, we have:

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} \omega(X_1, \dots, \hat{X}_i, \dots, X_{k+1}) \\ + \sum_{1 \le i < j \le k+1} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1}).$$

Clearly $d\omega$ is \mathbb{R} -multilinear.

(a) Show that for any $i \in \{2, 3, \dots, k+1\}$, we have:

$$d\omega(X_1, X_2, \dots, X_k) = -d\omega(X_i, X_2, \dots, X_{i-1}, X_1, X_{i+1}, \dots, X_{k+1})$$

- (b) Deduce from (a) that $d\omega$ is alternating.
- (c) Let $f \in C^{\infty}(M)$; show that

$$d\omega(fX_1, X_2, \dots, X_{k+1}) = fd\omega(X_1, X_2, \dots, X_{k+1})$$

(d) Deduce from (b) and (c) that $d\omega : \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \to C^{\infty}(M)$ is $C^{\infty}(M)$ -multilinear.

3. (Poincaré's lemma) Let $U \subset \mathbb{R}^n$ be open and star-shaped with respect to 0, and let $p \in \mathbb{N}^*$. Consider the \mathbb{R} -linear map $K: \Omega^p(U) \to \Omega^{p-1}(U)$, defined on a C^{∞} monomial p-form $adx^{i_1} \wedge \cdots \wedge dx^{i_p}$ by

$$K(adx^{i_1}\wedge\cdots\wedge dx^{i_p})|_{\mathbf{x}} = \left(\int_0^1 a(t\mathbf{x})t^{p-1}dt\right)\sum_{j=1}^p (-1)^{j+1}x^{i_j}dx_{i_1}\wedge\cdots\wedge\widehat{dx^{i_j}}\wedge\cdots\wedge dx^{i_p},$$

which we extend by \mathbb{R} -linearity to $\Omega^p(U)$. Show that

$$d \circ K(\omega) + K \circ d(\omega) = \omega, \quad \forall \omega \in \Omega^p(U)$$

- 4. Let G be a Lie group, and let $\mathfrak{g} = T_e G$ be its Lie algebra. For each $g \in G$, define the mapping $\omega(g) : T_g G \to \mathfrak{g}$ by $\omega(g)(v) = T_g L_{g^{-1}}(v)$. We define the mapping $\omega : \mathcal{X}(G) \to C^{\infty}(G; \mathfrak{g})$ as follows: $\omega(X)(g) = \omega(g)(X(g)), \forall g \in G$.
 - (a) Show that $\omega : \mathcal{X}(G) \to C^{\infty}(G; \mathfrak{g})$ is $C^{\infty}(G)$ -linear, and hence defines a $C^{\infty} \mathfrak{g}$ -valued 1-form on G. ω is called the canonical 1-form of G.
 - (b) Show that $\forall g \in G, L_q^* \omega = \omega$; i.e. the canonical 1-form of G defined above is left-invariant.
 - (c) The exterior derivative operator d is extended to \mathfrak{g} -valued forms on G as follows: Let $(\mathbf{e}_i)_{i=1}^n$ be a basis for \mathfrak{g} , and let η be any \mathfrak{g} -valued k form on G. Then there exist uniquely defined smooth differential k-forms $\eta^1, \dots, \eta^n \in \Omega^k(G)$ such that $\eta = \sum_{i=1}^n \eta^i \otimes \mathbf{e}_i$. We then define: $d\eta = \sum_{i=1}^n d\eta^i \otimes \mathbf{e}_i$.

For any two \mathfrak{g} -valued 1-forms α, β on G, the \mathfrak{g} -valued 1-form $[\alpha, \beta]$ on G is defined by:

$$[\alpha,\beta]|_p(\mathbf{v},\mathbf{w}) = [\alpha_p(\mathbf{v}),\beta_p(\mathbf{w})] - [\alpha_p(\mathbf{w}),\beta_p(\mathbf{v})],$$

 $\forall p \in G, \, \forall \mathbf{v}, \mathbf{w} \in T_p(G).$

Show that the canonical 1–form ω satisfies:

$$d\omega + \frac{1}{2}[\omega, \omega] = 0$$

(Maurer-Cartan structure equation).