1. Let M be a $C^{\infty} n$-manifold, and let $\omega_{1}, \cdots, \omega_{k} \in \Omega^{1}(M)$. Assume that $\forall p \in M,\left(\omega_{1}(p), \cdots, \omega_{k}(p)\right)$ is a linearly independent family of $T_{p}^{\star} M$. For each $p \in M$, define the subspace Δ_{p} of $T_{p} M$ by:

$$
\Delta_{p}=\cap_{i=1}^{k} \operatorname{ker}\left(\omega_{i}(p)\right)
$$

(a) Show that the assignment $p \mapsto \Delta_{p}$ defines a C^{∞} distribution Δ of rank $n-k$ on M.
(b) Show that: Δ involutive $\Leftrightarrow d \omega^{i} \equiv 0 \bmod \omega^{1}, \cdots, \omega^{k}, \forall i \in\{1, \cdots, k\}$ (i.e. for each i, for each $p \in M$, there exist C^{∞} 1 -forms $\eta_{1}^{i}, \cdots, \eta_{k}^{i}$ defined in some open neighborhood U of p such that $d \omega^{i}=\sum_{j=1}^{k} \eta_{j}^{i} \wedge \omega^{j}$ in U.)
2. Let M be a C^{∞} manifold and let $\omega \in \Omega^{k}(M)(k \geq 1)$. We wish to show that $d \omega: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \rightarrow C^{\infty}(M)$ is alternating and $C^{\infty}(M)$-multilinear (and hence defines an element of $\Omega^{k+1}(M)$). Recall that $\mathcal{X}(M)$ denotes the $C^{\infty}(M)-$ module of C^{∞} vector fields on M, and that for any C^{∞} vector fields $X_{1}, X_{2}, \ldots, X_{k+1}$ on M, we have:

$$
\begin{aligned}
d \omega\left(X_{1}, \ldots, X_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i+1} \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right) \\
& +\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right) .
\end{aligned}
$$

Clearly $d \omega$ is \mathbb{R}-multilinear.
(a) Show that for any $i \in\{2,3, \cdots, k+1\}$, we have:

$$
d \omega\left(X_{1}, X_{2}, \ldots, X_{k}\right)=-d \omega\left(X_{i}, X_{2}, \ldots, X_{i-1}, X_{1}, X_{i+1}, \ldots, X_{k+1}\right)
$$

(b) Deduce from (a) that $d \omega$ is alternating.
(c) Let $f \in C^{\infty}(M)$; show that

$$
d \omega\left(f X_{1}, X_{2}, \ldots, X_{k+1}\right)=f d \omega\left(X_{1}, X_{2}, \ldots, X_{k+1}\right)
$$

(d) Deduce from (b) and (c) that $d \omega: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \rightarrow C^{\infty}(M)$ is $C^{\infty}(M)$-multilinear.
3. (Poincaré's lemma) Let $U \subset \mathbb{R}^{n}$ be open and star-shaped with respect to 0 , and let $p \in \mathbb{N}^{\star}$. Consider the \mathbb{R}-linear map $K: \Omega^{p}(U) \rightarrow \Omega^{p-1}(U)$, defined on a C^{∞} monomial $p-$ form $a d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$ by

$$
\left.K\left(a d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}\right)\right|_{\mathbf{x}}=\left(\int_{0}^{1} a(t \mathbf{x}) t^{p-1} d t\right) \sum_{j=1}^{p}(-1)^{j+1} x^{i_{j}} d x_{i_{1}} \wedge \cdots \wedge \widehat{d x^{i_{j}}} \wedge \cdots \wedge d x^{i_{p}}
$$

which we extend by \mathbb{R}-linearity to $\Omega^{p}(U)$. Show that

$$
d \circ K(\omega)+K \circ d(\omega)=\omega, \quad \forall \omega \in \Omega^{p}(U)
$$

4. Let G be a Lie group, and let $\mathfrak{g}=T_{e} G$ be its Lie algebra. For each $g \in G$, define the mapping $\omega(g): T_{g} G \rightarrow \mathfrak{g}$ by $\omega(g)(v)=$ $T_{g} L_{g^{-1}}(v)$. We define the mapping $\omega: \mathcal{X}(G) \rightarrow C^{\infty}(G ; \mathfrak{g})$ as follows: $\omega(X)(g)=\omega(g)(X(g)), \forall g \in G$.
(a) Show that $\omega: \mathcal{X}(G) \rightarrow C^{\infty}(G ; \mathfrak{g})$ is $C^{\infty}(G)$-linear, and hence defines a $C^{\infty} \mathfrak{g}$-valued 1-form on G. ω is called the canonical 1-form of G.
(b) Show that $\forall g \in G, L_{g}^{\star} \omega=\omega$; i.e. the canonical 1 -form of G defined above is left-invariant.
(c) The exterior derivative operator d is extended to \mathfrak{g}-valued forms on G as follows: Let $\left(\mathbf{e}_{i}\right)_{i=1}^{n}$ be a basis for \mathfrak{g}, and let η be any \mathfrak{g}-valued k form on G. Then there exist uniquely defined smooth differential k-forms $\eta^{1}, \cdots, \eta^{n} \in \Omega^{k}(G)$ such that $\eta=\sum_{i=1}^{n} \eta^{i} \otimes \mathbf{e}_{i}$. We then define: $d \eta=\sum_{i=1}^{n} d \eta^{i} \otimes \mathbf{e}_{i}$.
For any two \mathfrak{g}-valued 1 -forms α, β on G, the \mathfrak{g}-valued 1 -form $[\alpha, \beta]$ on G is defined by:

$$
\left.[\alpha, \beta]\right|_{p}(\mathbf{v}, \mathbf{w})=\left[\alpha_{p}(\mathbf{v}), \beta_{p}(\mathbf{w})\right]-\left[\alpha_{p}(\mathbf{w}), \beta_{p}(\mathbf{v})\right]
$$

$\forall p \in G, \forall \mathbf{v}, \mathbf{w} \in T_{p}(G)$.
Show that the canonical 1-form ω satisfies:

$$
d \omega+\frac{1}{2}[\omega, \omega]=0
$$

(Maurer-Cartan structure equation).

